Банки

Разработка месторождений хромовых руд ао "донской горно-обогатительный комбинат". Методы извлечения хрома

по применению Классификации запасов

месторождений и прогнозных ресурсов

твердых полезных ископаемых

Хромовые руды

Москва, 2007

Разработаны Федеральным государственным учреждением «Госу­дарственная комиссия по запасам полезных ископаемых» (ФГУ ГКЗ) по заказу Министерства природных ресурсов Российской Федерации и за счет средств федерального бюджета.

Утверждены распоряжением МПР России от 05.06.2007 г. № 37-р.

Предназначены для работников предприятий и организаций, осу­ществляющих свою деятельность в сфере недропользования, неза­висимо от их ведомственной принадлежности и форм собственно­сти. Применение настоящих Методических рекомендаций обеспе­чит получение геологоразведочной информации, полнота и каче­ство которой достаточны для принятия решений о проведении дальнейших разведочных работ или о вовлечении запасов разведан­ных месторождений в промышленное освоение, а также о проекти­ровании новых или реконструкции существующих предприятий по добыче и переработке полезных ископаемых.

  1. Общие сведения

1. Настоящие Методические рекомендации по применению Классификации запасов к месторождениям хромовых руд (далее – Методические рекомендации) разработаны в соответствии с Положением о Министерстве природных ресурсов Российской Федерации, утвержденным постановлением Правительства Российской Федерации от 22 июля 2004 г. № 370 (Собрание законодательства Российской Федерации, 2004, № 31, ст.3260; 2004, № 32, ст. 3347; 2005, № 52 (3ч.), ст. 5759; 2006 ,№ 52 (3ч.), 5597), Положением о Федеральном агентстве по недропользованию, утвержденным Постановлением Правительства Российской Федерации от 17 июня 2004 г. № 293 (Собрание законодательства Российской Федерации, 2004, N 26, ст. 2669, 2006, №25, ст.2723), Классификацией запасов месторождений и прогнозных ресурсов твердых полезных ископаемых, утвержденной приказом МПР России от 11 декабря 2006 г. № 278, и содержат рекомендации по применению Классификации запасов к месторождениям хромовых руд.

2. Методические рекомендации направлены на оказание практической помощи недропользователям и организациям, осуществляющим подготовку материалов по подсчету запасов полезных ископаемых и представляющих их на государственную экспертизу.

3. Х р о м – голубовато-серебристый блестящий металл, устойчивый против коррозии на воздухе и в воде, имеющий плотность 7,19 г/см 3 (при температуре 20 ºС) и температуру плавления 1890 ºС. При обычных температурах хром легко реагирует с разбавленными кислотами – HCl и H 2 SO 4 , но не растворяется в HNO 3 , H 3 PO 4 и HClO 4 благодаря образованию защитной пленки. В соединениях валентность хрома изменяется от двух до шести, трехвалентные соединения устойчивые, а шестивалентные являются сильными окислителями. Образует сплавы с рядом элементов. Наиболее распространенными являются сплавы на железной основе (феррохром), с углеродом и кобальтом или никелем (стеллит), двойные хромоникелевые сплавы (нихром). Хромоникелевые стали и сплавы используются в конструкциях ядерных реакторов. Основные области потребления – ферросплавное производство, огнеупорная и химическая отрасли промышленности.

На применении хрома в железных сплавах основано современное производство высокопрочных конструкционных, кислотоупорных, нержавеющих, жаропрочных, шарикоподшипниковых сталей, сплавов сопротивления и чугунов с заданными свойствами. Металлический хром применяется главным образом для хромирования стальных изделий.

В огнеупорной промышленности хромовые руды употребляются для изготовления хроммагнезитовых и других хромсодержащих огнеупоров и хромбетона, используемых для футеровки мартеновских и индукционных печей, конверторов, вращающихся печей в цементной промышленности.

Химическая промышленность потребляет хромовые руды преимущественно для производства хромпиков (двухромовокислых солей натрия и калия) и других соединений хрома, применяемых в качестве красителей, дубителей, катализаторов, протрав и др. Радиоактивный изотоп хрома нашел применение в медицине.

4.Кларк хрома (по А. П. Виноградову) составляет 0,0083 %. Из более 20 хромсодержащих минералов в промышленном отношении важны только хромшпинелиды, которые служат в настоящее время единственным источником получения металлического хрома и продуктов его химических соединений.

В группе хромшпинелидов с общей формулой (Mg, Fe) 2+ (Cr, Al, Fe) 2 3+ O 4 наибольший интерес представляют следующие минеральные виды: магнохромит (Mg, Fe)Cr 2 O 4 , хромпикотит (Mg, Fe)(Cr, Al) 2 O 4 , алюмохромит (Fe, Mg)(Cr, Al) 2 O 4 , субферрихромит (Mg, Fe)(Cr, Fe) 2 O 4 и в меньшей степени субферриалюмохромит (Mg, Fe)(Cr, Fe, Al) 2 O 4 . Содержание оксидов в разновидностях хромшпинелидов колеблется в широких пределах: Cr 2 O 3 2–67 %, Al 2 O 3 2–65 %, Fe 2 O 3 0–41 %, FeO 10–30 %, MgO 1–20 %.

5. По условиям образования выделяются эндогенные, экзогенные и техногенные месторождения хромовых руд.

6. Эндогенные месторождения хромовых руд относятся к группе магматических образований, пространственно и генетически связаны с гипербазитовыми интрузиями двух формаций: перидотит-пироксенит-габброноритовой расслоенных (стратиформных) массивов и дунит-гарцбургитовой альпинотипных массивов.

7. Раннемагматические сегрегационные месторождения хромовых руд образовались на ранней стадии формирования интрузивов ультраосновных пород и связаны с дифференцированными (стратиформными) расслоенными массивами платформ. Хромовые руды залегают в нижних горизонтах массивов, сложенных дунитами, перидотитами, пироксенитами. Рудоносный горизонт имеет мощность от первых метров до нескольких сотен метров, в его пределах возможно наличие ряда рудных зон. Рудные тела пластообразной формы обычно развиты по всей площади интрузива. Мощность рудных тел выдержана и, как правило, мала (первые метры), однако протяженность достигает многих десятков километров, поэтому даже маломощные тела могут иметь значительные запасы. Руды преимущественно сплошные и густовкрапленные, среднехромистые, повышенной железистости, обычно относятся к огнеупорным сортам и лишь наиболее богатые отвечают требованиям металлургии. К этому типу принадлежат месторождения Бушвельд (ЮАР), Великая Дайка (Зимбабве), Кеми (Финляндия), Стиллуотер (США), месторождения Индии.

8. Позднемагматические месторождения хромовых руд образуются в позднюю стадию формирования интрузивов ультраосновных пород дунит-гарцбургитовой формации эвгеосинклиналей. Рудные тела залегают среди дунитов, имеют форму линз, столбов, жил. Мощность крупных тел достигает 250 м, протяженность 1550 м, ширина 330 м. Месторождения состоят обычно из серии сближенных тел, число которых может достигать нескольких десятков.

Хромшпинелиды относятся к высокомагнезиальным разностям с переменным содержанием хрома и алюминия. Месторождения этого типа служат главным источником высокохромистых металлургических, а также высокоглиноземистых огнеупорных руд. Сюда относятся месторождения Южно-Кемпирсайской группы (Казахстан), Гулемен (Турция) и др.

С позднемагматическими месторождениями хромита ассоциируют проявления попутных полезных ископаемых:

высококачественных (несерпентинизированных) дунитов, являющихся редким и дефицитным видом сырья для производства безобжиговых литейно-формовочных смесей, форстеритовых огнеупоров и теплоизоляционных вкладышей;

благородного корунда и рубина;

металлов платиновой группы в виде микровключений самостоятельных минералов в зернах хромшпинелидов.

Месторождения хромовых руд России подразделяются на промышленные типы, приведенные в табл. 1.

Связаны с комплексами ультрамафитов и мафитов. Выделяют два типа магматических месторождений хрома: ранне- и позднемагматические.

К раннемагматическим месторождениям хром относят месторождения Бушвельдского массива в ЮАР, Великой Дайки в Зимбабве, Сарановское в России, Стиллуотер в США и др. Эти месторождения приурочены к дифференцированным комплексам мафитов и улътрамафитов, с которыми связано примерно 95 % запасов хромитов развитых капиталистических и развивающихся стран и 5 % запасов в России. В Бушвельдском комплексе учтено свыше 1 млрд, т хромитов, а в Великой Дайке свыше 0,5 млрд. т. Форма хромитовых залежей в этом типе месторождений пластообразная, их относят к стратиформным.

Комплексы интрузивных пород связывают с основной магмой, приурочены они к платформенным областям. Хромитовые руды залегают среди ультрамафитов, анортозитов, редко среди норитов. Пласты хромитов в большинстве случаев приурочены к контактам разных по составу пород и являются составной частью ритмов типа дунит-хромитит-бронзитит, бронзитит-хромитит-анортозит-норит, гарцбургит-хромитит-ортопироксенит-вебстерит и т. п. Для этих месторождений характерна небольшая мощность хромититов (0,3-3 м, реже до 3,6 м и, как исключение, до 12 м), но большая протяженность (десятки километров).

Нижний контакт хромититов обычно резкий, верхний - постепенный. В низу пластов - массивные руды, в верху - густовкрапленные. Число пластов хромититов различно, в Бушвельде 27, Стиллуотере 13, комплексе Хартли Великой Дайки 12. Кроме хромита в состав руд входят:

  1. Оливин
  2. Ортопироксен
  3. Плагиоклаз
  4. Сульфиды

Минералы платиноидов - в основном палладия и . Встречаются также минералы , , . Для хромитов характерна повышенная железистость. Иногда (например, на Сарановском месторождении) железистость ниже, чем на других месторождениях этого типа. Степень окисления в хромитах высока (около 30%). В более кислых разностях пород хромиты богаче железом и , в улътрамафитах - хромом и магнием.

Формирование комплексов тесно связано с магматической дифференциацией . В частности, хромитовые пласты возникали при более раннем выделении хромитов из порции расплавов и их осаждении в расплаве благодаря повышенной плотности.

Позднемагматические месторождения хромитов приурочены к ультрамафитам. Примеры - месторождения Кемпирсайское в России, Гулеман в Турции, Каледония на Кубе. Хромитоносные массивы ультрамафитов слагаются в основном гарцбургитами и дуиитами. Дуниты обычно формируют зоны вокруг рудных тел хромититов. Рудные тела этих месторождений представлены в основном линзами и жилами, реже столбообразными телами и гнездами. Нередко рудные тела формируют зоны. Мощность тел обычно первые метры, реже - десятки метров и, как исключение, 230 м. Протяженность рудных тел - от метров до десятков и сотен метров. Длина рудоносных зон может достигать первых километров, при мощности десятки и сотни метров.

Руды представлены как массивными сплошными разностями, так и вкрапленными (густо-, средне- и убоговкрапленные разности). Хромит представлен высокохромистой разностью и богатым глиноземом хромпикотитом. Обычно с увеличением содержания хрома в рудах растет содержание в них хрома и магния. В состав хромитовых руд входят серпентин, оливин, орто- и клинопироксены, хромсодержащие хлориты и другие минералы. Встречаются минералы платиноидов - осмия, иридия, рутения, платины, родия, палладия. Хромитоносные ультрамафиты рассматриваемого типа расположены в геосипклиналытых (складчатых) областях различного возраста, в том числе и древних (Селюкве в Зимбабве). В России с этим типом месторождений связаны основные запасы хромитов.

На генезис хромитов этого типа существуют различные взгляды. Одни геологи рассматривают их как позднемагматические (Г. А. Соколов, Н. В. Павлов), другие относят к метасоматическим гидротермальным или даже метаморфогенным образованиям. Гидротермально-метасоматическая гипотеза обосновывается явно метасоматическим происхождением окружающих хромитовые тела дунитов, которые связываются таким образом единством происхождения (А. С. Варлаков). С. В. Москалева считала, что хромиты возникали в подкоровых условиях при экстракции хрома из перидотитов при их замещении дунитами. И. Ф. Романович предполагает, что в генезисе хромитов могла сыграть роль термодиффузия, приведшая к дифференциации веществ. Существуют и взгляды на генезис хромитов этой формации как ликвационный. Общее всех современных представлений о генезисе - хромитовые тела сформировались позднее вмещающих их ультрамафитов (исключая дунитовую оторочку).

Твёрдый металл голубовато-белого цвета. Хром иногда относят к чёрным металлам. Этот металл способен окрашивать соединения в разные цвета, потому и был назван «хром», что означает «краска». Хром – микроэлемент, необходимый для нормального развития и функционирования человеческого организма. Важнейшая его биологическая роль состоит в регуляции углеводного обмена и уровня глюкозы в крови.

Смотрите так же:

СТРУКТУРА

В зависимости от типов химической связи — как и все металлы хром имеет металлический тип кристаллической решетки, то есть в узлах решетки находятся атому металла.
В зависимости от пространственной симметрии — кубическая, объемно-центрированная а = 0,28839 нм. Особенностью хрома является резкое изменение его физических свойств при температуре около 37°С. Кристаллическая решетка металла состоит из его ионов и подвижных электронов. Аналогично атом хрома в основном состоянии имеет электронную конфигурацию. При 1830 °С возможно превращение в модификацию с гранецентрированной решеткой, а = 3,69Å.

СВОЙСТВА

Хром имеет твердость по шкале Мооса 9, один из самых твердых чистых металлов (уступает только иридию, бериллию, вольфраму и урану). Очень чистый хром достаточно хорошо поддаётся механической обработке. Устойчив на воздухе за счёт пассивирования. По этой же причине не реагирует с серной и азотной кислотами. При 2000 °C сгорает с образованием зелёного оксида хрома(III) Cr 2 O 3 , обладающего амфотерными свойствами. При нагревании реагирует со многими неметаллами, часто образуя соединения нестехиометрического состава карбиды, бориды, силициды, нитриды и др. Хром образует многочисленные соединения в различных степенях окисления, в основном +2, +3, +6. Хром обладает всеми характерными для металлов свойствами — хорошо проводит тепло, электрический ток, имеет присущий большинству металлов блеск. Является антиферромагнетиком и парамагнетиком, то есть, при температуре 39 °C переходит из парамагнитного состояния в антиферромагнитное (точка Нееля).

ЗАПАСЫ И ДОБЫЧА

Самые большие месторождения хрома находятся в ЮАР (1 место в мире), Казахстане, России, Зимбабве, Мадагаскаре. Также есть месторождения на территории Турции, Индии, Армении, Бразилии, на Филиппинах.nГлавные месторождения хромовых руд в РФ известны на Урале (Донские и Сарановское). Разведанные запасы в Казахстане составляют свыше 350 миллионов тонн (2 место в мире)Хром встречается в природе в основном в виде хромистого железняка Fe(CrO 2) 2 (хромит железа). Из него получают феррохром восстановлением в электропечах коксом (углеродом). Чтобы получить чистый хром, реакцию ведут следующим образом:
1) сплавляют хромит железа с карбонатом натрия (кальцинированная сода) на воздухе;
2) растворяют хромат натрия и отделяют его от оксида железа;
3) переводят хромат в дихромат, подкисляя раствор и выкристаллизовывая дихромат;
4) получают чистый оксид хрома восстановлением дихромата натрия углём;
5) с помощью алюминотермии получают металлический хром;
6) с помощью электролиза получают электролитический хром из раствора хромового ангидрида в воде, содержащего добавку серной кислоты.

ПРОИСХОЖДЕНИЕ

Среднее содержание Хрома в земной коре (кларк) 8,3·10 -3 % . Этот элемент, вероятно, более характерен для мантии Земли, так как ультраосновные породы, которые, как полагают, ближе всего по составу к мантии Земли, обогащены Хромом (2·10 -4 %). Хром образует массивные и вкрапленные руды в ультраосновных горных породах; с ними связано образование крупнейших месторождений Хрома. В основных породах содержание Хрома достигает лишь 2·10 -2 %, в кислых — 2,5·10 -3 %, в осадочных породах (песчаниках) — 3,5·10 -3 %, глинистых сланцах — 9·10 -3 % . Хром — сравнительно слабый водный мигрант; содержание Хрома в морской воде 0,00005 мг/л.
В целом Хром — металл глубинных зон Земли; каменные метеориты (аналоги мантии) тоже обогащены Хромом (2,7·10 -1 %). Известно свыше 20 минералов Хрома. Промышленное значение имеют только хромшпинелиды (до 54% Сr); кроме того, Хром содержится в ряде других минералов, которые нередко сопровождают хромовые руды, но сами не представляют практическое ценности (уваровит, волконскоит, кемерит, фуксит).
Различают три основных минерала хрома: магнохромит (Mg, Fe)Cr 2 O 4 , хромпикотит (Mg, Fe)(Cr, Al) 2 O 4 и алюмохромит (Fe, Mg)(Cr, Al) 2 O 4 . По внешнему виду они неразличимы, и их неточно называют «хромиты».

ПРИМЕНЕНИЕ

Хром - важный компонент во многих легированных сталях (в частности, нержавеющих), а также и в ряде других сплавов. Добавка хрома существенно повышает твердость и коррозийную стойкость сплавов. Использование Хрома основано на его жаропрочности, твердости и устойчивости против коррозии. Больше всего Хрома применяют для выплавки хромистых сталей. Алюмино- и силикотермический Хром используют для выплавки нихрома, нимоника, других никелевых сплавов и стеллита.
Значительное количество Хрома идет на декоративные коррозионно-стойкие покрытия. Широкое применение получил порошковый Хром в производстве металлокерамических изделий и материалов для сварочных электродов. Хром в виде иона Cr 3+ — примесь в рубине, который используется как драгоценный камень и лазерный материал. Соединениями Хрома протравливают ткани при крашении. Некоторые соли Хрома используются как составная часть дубильных растворов в кожевенной промышленности; PbCrO 4 , ZnCrO 4 , SrCrO 4 — как художественные краски. Из смеси хромита и магнезита изготовляют хромомагнезитовые огнеупорные изделия.
Используется в качестве износоустойчивых и красивых гальванических покрытий (хромирование).
Хром применяется для производства сплавов: хром-30 и хром-90, незаменимых для производства сопел мощных плазмотронов и в авиакосмической промышленности.

Хром (англ. Chromium) — Cr

Хромовые руды

Хромиты (a. chromite ores, chrome iron ores; н. Chromerze; ф. minerais de chrome; и. minerales de cromo, menas de cromo ), - природные минеральные образования, содержащие в таких соединениях и концентрациях, при к-рых их пром. использование технически возможно и экономически целесообразно. B природе известно много разл. соединений хрома: он входит в состав свинцовых и медно-свинцовых оксидов, силикатов (хромграната, хромдиопсида, хромовых слюд) и др. Промышленные скопления образуют только хромшпинелиды: (Mg, Fe)Cr 2 O 4 , a люмохромит (Mg, Fe) (Cr, Al) 2 O 4 , хромпикотит (Mg, Fe)(Al, Cr) 2 O 4 . Cодержание Cr 2 O 3 в минералах от 2 до 67%. Пром. значимость руды имеют при содержании в них Cr 2 O 3 не ниже 25-30%.
Cреди пром. типов м-ний X. p. выделяются: раннемагматические (м-ния Юж. Aфрики), позднемагматические (м-ния CCCP, Греции, Aлбании, Югославии, Tурции и др.) и россыпные (CCCP, Kуба, Hовая Kаледония).
Пo вопросу происхождения м-ний X. p. высказываются 2 осн. гипотезы: они образуются совместно c вмещающими их ультраосновными и основными породами за счёт внедрения магмы и кристаллизации её в верх. частях земной ; хромитоносные складчатых областей являются тектонич. пластинами, выколотыми в верхах верх. мантии в области океанич. коры и перемещёнными на десятки и сотни км, в осн. по латерали в p-ны совр. залегания.
M-ния X. p. залегают только в определённых разновидностях магматич. пород основного и ультраосновного состава. B областях древних щитов залегают расслоенные массивы, сложенные согласными прослоями , анортозитов, пироксенитов и др. пород основного, a также горизонтами пород ультраосновного состава. Mассивы пород такого состава ( и Великая Дайка в Юж. Aфрике) включают осн. мировые запасы X. p., залегающих в виде выдержанных маломощных (обычно до первых десятков см) пластов, вытянутых на десятки км. B складчатых горн. областях ( , Kавказ и др.) м-ния X. p. залегают в массивах, сложенных в осн. ультраосновными породами (перидотитами и дунитами). Pудные тела здесь обычно имеют форму удлинённых линз. M-ния X. p. формировались в разл. циклы геол. развития: протерозойский ( , США), каледонский (Hорвегия, Юж. Aфрика), герцинский (CCCP, Aвстралия, вероятно, б.ч. Tурции и Ирана и др.), альпийский ( , Aлбания, Филиппины и др.).
K X. p., используемым в разл. отраслях нар. x-ва, предъявляются определённые требования. Hаиболее ценные металлургич. X. p, (сырьё для получения феррохрома) должны содержать не менее 40% Cr 2 O 3 , a отношение Cr:Fe должно быть не ниже 2,5. Для произ-ва чугунов повышенной прочности, жаропрочности, кислотоупорности используются X. p. c содержанием Cr 2 O 3 35-40%, для изготовления огнеупоров - не ниже 32%, для произ-ва хромовых солей - не ниже 34-37%.
Ha терр. CCCP м-ния X. p. имеют широкое распространение. Ha Урале разрабатываются крупные м-ния Kемпирсайского массива, небольшие тела Cарановского м-ния, выявлены многочисл. непром. залежи в массивах ультрабазитов. Большое кол-во рудных тел установлено в пределах пояса ультрабазитов Mалого Kавказа, являющегося фрагментом планетарного Aльпийско-Гималайского пояса. Kонцентрации X. p. выявлены также в ультрабазитах Kузнецкого Aлатау, Cаян, Tувинской ACCP, Kамчатки и др. горн. p-нов. Kроме того, X. p. установлены в пределах древних платформенных структур (Bоронежский, Украинский, Балтийский кристаллич. щиты).
Oбщие запасы X. p. в промышленно развитых капиталистич. и развивающихся странах на нач. 1988 оцениваются более чем в 4,3 млрд. т, в т.ч. (млн. т): в ЮАР 3100, более 1300, Индии 117, Tурции 100, на Филиппинах 60, в Финляндии 50, Иране 33, Kанаде 16, Бразилии 14,5. Mеньшими запасами обладают , Папуа - Hовая , Пакистан, Oман, Mадагаскар, Cудан, Hовая Kаледония и др. Г. Г. Kравченко.


Горная энциклопедия. - М.: Советская энциклопедия . Под редакцией Е. А. Козловского . 1984-1991 .

Смотреть что такое "Хромовые руды" в других словарях:

    ХРОМОВЫЕ РУДЫ. Главные промышленные минералы хромшпинелиды и некоторые минералы содержащие примесь хрома: серпентин, хлорит, оливин, пироксен и др. Различают сплошные и вкрапленные хромовые руды. Содержание Cr2O3 10 62%. Мировые запасы св. 1,6… … Большой Энциклопедический словарь

    - (хромиты). Главные промышленные минералы хромшпинелиды и некоторые минералы, содержащие примесь хрома: серпентин, хлорит, оливин, пироксен и др. Различают сплошные и вкрапленные хромовые руды. Содержание Cr2O3 10 62%. Мировые запасы свыше 4 млрд … Энциклопедический словарь

    хромовые руды - Смотри хромовые руды (хромит) …

    Хромиты, природные минеральные образования, содержащие хром в таких соединениях и концентрациях, при которых их промышленное использование технически возможно и экономически целесообразно. Среди хромсодержащих минералов только… … Большая советская энциклопедия

    - (хромиты). Гл. пром. минералы хромшпинелиды и нек рые минералы, содержащие примесь хрома: серпентин, хлорит, оливин, пироксен и др. Различают сплошные и вкрапленные X. р. Содержание Сr2О3 10 62%. Мировые запасы св. 4 млрд. т. Гл. добывающие… … Естествознание. Энциклопедический словарь

    хромовые руды (хромит) - руды, содержащие Cr в таких соединениях и концентрациях, при которых их промышленное использование технически возможно и экономически целесообразно. Промышленные месторождения хрома образуют хромшпинелиды: магнохромит (Mg, Fe)… … Энциклопедический словарь по металлургии

    руды черных металлов - руды, являющиеся сырьевой базой ЧМ; включающие Fe , Mn и Cr руды (Смотри Железные руды, Марганцевые руды и Хромовые руды); Смотри также: Руды товарные руды сидеритовые руды … Энциклопедический словарь по металлургии

    руды цветных металлов - руды, являющиеся сырьем ЦМ, включающие обширную группу Al , полиметаллических (содержащих Pb, Zn и другие металлы), Cu , Ni , Co , Sn , W , Mo , Ti руд. Специфическая особенность руд цветных металлов их комплексный… … Энциклопедический словарь по металлургии

    руды редких металлов - природные образования, содержащие РЭ в виде самостоятельных минералов или изоморфных примесей в других рудных и жильных минералах в количествах, достаточных для их рентабильного промышленного извлечения. РЭ принято считать… … Энциклопедический словарь по металлургии

    Руды - минеральные образования с содержанием металлов или полезных минералов, обеспечивающие технически возможное и экономически целесообразное их извлечение. Совокупность минералов. Минералы, содержащие извлекаемый металл, называются рудными,… … Энциклопедический словарь по металлургии

Содержание статьи

ХРОМ – (Chromium) Cr, химический элемент 6(VIb) группы Периодической системы. Атомный номер 24, атомная масса 51,996. Известно 24 изотопа хрома с 42 Cr по 66 Cr. Изотопы 52 Cr, 53 Cr, 54 Cr являются стабильными. Изотопный состав природного хрома: 50 Cr (период полураспада 1,8·10 17 лет) – 4,345%, 52 Cr – 83,489%, 53 Cr – 9,501%, 54 Cr – 2,365%. Основные степени окисления +3 и +6.

В 1761 профессор химии Петербургского университета Иоганн Готтлоб Леман (Johann Gottlob Lehmann) у восточного подножия Уральских гор на Березовском руднике обнаружил замечательный красный минерал, который при измельчении в порошок давал яркую желтую окраску. В 1766 Леман привез образцы минерала в Петербург. Обработав кристаллы соляной кислотой, он получил белый осадок, в котором обнаружил свинец. Леман назвал минерал сибирским красным свинцом (plomb rouge de Sibérie), теперь известно, что это был крокоит (от греческого «krokos» – шафран) – природный хромат свинца PbCrO 4 .

Немецкий путешественник и естествоиспытатель Петер Симон Паллас (Peter Simon Pallas) (1741–1811) возглавил экспедицию Петербургской Академии наук в центральные регионы России и в 1770 побывал на Южном и Среднем Урале, в том числе на Березовском руднике и, подобно Леману, заинтересовался крокоитом. Паллас писал: «Этот удивительный красный свинцовый минерал не встречается более ни в одном месторождении. При растирании в порошок становится желтым, и может быть использован в художественной миниатюре». Несмотря на редкость и трудность доставки крокоита с Березовского рудника в Европу (на это уходило почти два года), использование минерала в качестве красящего вещества было оценено по достоинству. В Лондоне и Париже конца 17 в. все знатные особы ездили на каретах, покрашенных мелко растертым крокоитом, кроме того, лучшие образцы сибирского красного свинца пополняли коллекции многих минералогических кабинетов Европы.

В 1796 образец крокоита попал к профессору химии Парижской минералогической школы Никола Луи Вокелену (Nicolas-Louis Vauquelin) (1763–1829), который проанализировал минерал, но не нашел в нем ничего кроме оксидов свинца, железа и алюминия. Продолжая исследования сибирского красного свинца, Вокелен прокипятил минерал с раствором поташа и после отделения белого осадка карбоната свинца получил желтый раствор неизвестной соли. При обработке его солью свинца образовывался желтый осадок, солью ртути – красный, а при добавлении хлорида олова раствор становился зеленым. Разлагая крокоит минеральными кислотами, он получил раствор «кислоты красного свинца», упаривание которой давало рубиново-красные кристаллы (сейчас понятно, что это был хромовый ангидрид). Прокалив их с углем в графитовом тигле, обнаружил после реакции множество сросшихся серых игольчатых кристаллов неизвестного до того времени металла. Вокелен констатировал высокую тугоплавкость металла и его устойчивость по отношению к кислотам.

Вокелен назвал новый элемент хромом (от греческого crwma – цвет, окраска) ввиду множества образуемых им разноцветных соединений. На основании своих исследований Вокелен впервые констатировал, что изумрудная окраска некоторых драгоценных камней объясняется примесью в них соединений хрома. Например, природный смарагд представляет собой окрашенный в глубокий зеленый цвет берилл, в котором алюминий частично замещен хромом.

Скорее всего, Вокеленом был получен не чистый металл, а его карбиды, о чем свидетельствует игольчатая форма полученных кристаллов, но Парижская Академия наук тем не менее зарегистрировала открытие нового элемента, и сейчас Вокелен справедливо считается первооткрывателем элемента № 24.

Юрий Крутяков