Контроль денег

Какая оценка параметра называется эффективной. Тесты эмм новые

Квадратурная модуляция и ее характеристики (QPSK, QAM)

Рассмотрим квадратурную фазовую манипуляцию (QPSK). Исходный поток данных dk(t)=d0, d1, d2,… состоит из биполярных импульсов, т.е. dk принимают значения +1 или -1 (рис. 3.5.а)), представляющие двоичную единицу и двоичный нуль. Этот поток импульсов разделяется на синфазный поток dI(t) и квадратурный - dQ(t), как показано на рис. 3.5.б).

dI(t)=d0, d2, d4,… (четные биты)

dQ(t)=d1, d3, d5,… (нечетные биты)

Удобную ортогональную реализацию сигнала QPSK можно получить, используя амплитудную модуляцию синфазного и квадратурного потоков на синусной и косинусной функциях несущей.

С помощью тригонометрических тождеств s(t) можно представить в следующем виде: s(t)=cos(2рf0t+и(t)). Модулятор QPSK, показанный на рис. 3.5.в), использует сумму синусоидального и косинусоидального слагаемых. Поток импульсов dI(t) используется для амплитудной модуляции (с амплитудой +1 или -1) косинусоиды.

Это равноценно сдвигу фазы косинусоиды на 0 или р; следовательно, в результате получаем сигнал BPSK. Аналогично поток импульсов dQ(t) модулирует синусоиду, что дает сигнал BPSK, ортогональный предыдущему. При суммировании этих двух ортогональных компонентов несущей получается сигнал QPSK. Величина и(t) будет соответствовать одному из четырех возможных сочетаний dI(t) и dQ(t) в выражении для s(t): и(t)=00, ±900 или 1800; результирующие векторы сигналов показаны в сигнальном пространстве на рис. 3.6. Так как cos(2рf0t) и sin(2рf0t) ортогональны, два сигнала BPSK можно обнаруживать раздельно. QPSK обладает рядом преимуществ перед BPSK: т.к. при модуляции QPSK один импульс передает два бита, то в два раза повышается скорость передачи данных или при той же скорости передачи данных, что и в схеме BPSK, используется в два раза меньшая полоса частот; а так же повышается помехоустойчивость, т.к. импульсы в два раза длиннее, а следовательно и больше по мощности, чем импульсы BPSK.



Рис. 3.5.

Рис. 3.6.

Квадратурную амплитудную модуляцию (KAM, QAM) можно считать логическим продолжением QPSK, поскольку сигнал QAM также состоит из двух независимых амплитудно-модулированных несущих.

При квадратурной амплитудной модуляции изменяется как фаза, так и амплитуда сигнала, что позволяет увеличить количество кодируемых бит и при этом существенно повысить помехоустойчивость. Квадратурное представление сигналов является удобным и достаточно универсальным средством их описания. Квадратурное представление заключается в выражении колебания линейной комбинацией двух ортогональных составляющих - синусоидальной и косинусоидальной (синфазной и квадратурной):

s(t)=A(t)cos(щt + ц(t))=x(t)sinщt + y(t)cosщt, где

x(t)=A(t)(-sinц(t)),y(t)=A(t)cosц(t)

Такая дискретная модуляция (манипуляция) осуществляется по двум каналам, на несущих, сдвинутых на 900 друг относительно друга, т.е. находящихся в квадратуре (отсюда и название).

Поясним работу квадратурной схемы на примере формирования сигналов четырехфазной ФМ (ФМ-4) (рис. 3.7).


Рис. 3.7.

Рис. 3.8. 16

Исходная последовательность двоичных символов длительностью Т при помощи регистра сдвига разделяется на нечетные импульсы y, которые подаются в квадратурный канал (cosщt), и четные - x, поступающие в синфазный канал (sinщt). Обе последовательности импульсов поступают на входы соответствующих формирователей манипулированных импульсов, на выходах которых образуются последовательности биполярных импульсов x(t) и y(t) с амплитудой ±Um и длительностью 2T. Импульсы x(t) и y(t) поступают на входы канальных перемножителей, на выходах которых формируются двухфазные (0, р) ФМ колебания. После суммирования они образуют сигнал ФМ-4.

На рис. 3.8. показано двухмерное пространство сигналов и набор векторов сигналов, модулированных 16-ричной QAM и изображенных точками, которые расположены в виде прямоугольной совокупности.

Из рис. 3.8. видно, что расстояние между векторами сигналов в сигнальном пространстве при QAM больше, чем при QPSK, следовательно, QAM является более помехоустойчивой по сравнению с QPSK,

11 мая 2011 в 19:42

Модуляция радиосигнала

  • Блог компании Yota

В комментариях к статье посетовал на отсутствие статей описывающей физическую сторону передачи информации по радио каналу.
Мы решили исправить это упущение и написать цикл постов о беспроводной передаче данных.
В первом из них мы расскажем о главном аспекте передачи информации посредством радиосигнала – модуляции.


Модуля́ция (лат. modulatio - размерность) - процесс изменения одного или нескольких параметров высокочастотного несущего колебания по закону низкочастотного информационного сигнала.
Передаваемая информация заложена в управляющем сигнале, а роль переносчика информации выполняет высокочастотное колебание, называемое несущим.
Модуляция может осуществляться изменением амплитуды, фазы или частоты высокочастотной несущей.
Эта техника дает несколько важных преимуществ:

  1. Позволяет сформировать радиосигнал, который будет обладать свойствами соответствующими свойствам несущей частоты. О свойствах волн разных частотных диапазонов можно почитать, например, .
  2. Позволяет использовать антенны малого размера, ведь размер антенны должен быть пропорционален длине волны.
  3. Позволяет избежать интерференции с другими радиосигналами.
Передаваемый в сетях WiMax поток данных соответствует частоте в районе 11 кГц. Если мы попробуем передавать этот низкочастотный сигнал по воздуху, нам понадобится антенна следующих размеров:


Антенна длинной 24 километра не кажется достаточно удобной в использовании.
Если же мы будем передавать этот сигнал наложенным на несущую частоту в 2.5 ГГц (частота используемая в Yota WiMax), то нам понадобится антенна длиной 12 см.

Аналоговая модуляция.

Прежде чем перейти непосредственно к цифровой модуляции, приведу картинку, иллюстрирующую аналоговую AM (амплитудную) и FM (частотную) модуляцию, которая освежит у многих школные познания:


исходный сигнал


AM (амплитудная модуляция)


FM (частотная модуляция)

Цифровая модуляция и ее типы.

В цифровой модуляции аналоговый несущий сигнал модулируется цифровым битовым потоком.
Существуют три фундаментальных типа цифровой модуляции (или шифтинга) и один гибридный:
  1. ASK – Amplitude shift keying (Амплитудная двоичная модуляция).
  2. FSK – Frequency shift keying (Частотая двоичная модуляция).
  3. PSK – Phase shift keying (Фазовая двоичная модуляция).
  4. ASK/PSK.
Упомяну, что существует традиция в русской терминологии радиосвязи использовать для модуляции цифровым сигналом термин «манипуляция».

В случае амплитудного шифтинга амплитуда сигнала для логического нуля может быть (например) в два раза меньше логической и единицы.
Частотная модуляция похожим образом представляет логическую единицу интервалом с большей частотой, чем ноль.
Фазовый шифтинг представляет «0» как сигнал без сдвига, а «1» как сигнал со сдвигом.
Да, тут мы как раз имеем дело со «сдвигом по фазе»:)
Каждая из схем имеет свои сильные и слабые стороны.
  • ASK хороша с точки зрения эффективности использования полосы частот, но подвержена искажениям при наличии шума и недостаточно эффективна с точки зрения потребляемой мощности.
  • FSK – с точностью до наоборот, энергетически эффективна, но не эффективно использует полосу частот.
  • PSK – хороша в обоих аспектах.
  • ASK/PSK – комбинация двух схем. Она позволяет еще лучше использовать полосу частот.
Самая простая PSK схема (показанная на рисунке) имеет собственное название - Binary phase-shift keying. Используется единственный сдвиг фазы между «0» и «1» - 180 градусов, половина периода.
Существуют также QPSK и 8-PSK:
QPSK использует 4 различных сдвига фазы (по четверти периода) и может кодировать 2 бита в символе (01, 11, 00, 10). 8-PSK использует 8 разных сдвигов фаз и может кодировать 3 бита в символе.

Одна из частных реализаций схемы ASK/PSK которая называется QAM - Quadrature Amplitude Modulation (квадратурная амплитудная модуляция (КАМ). Это метод объединения двух AM-сигналов в одном канале. Он позваляет удвоить эффективную пропускную способность. В QAM используется две несущих с одинаковой частотой но с разницей в фазе на четверть периода (отсюда и возникает слово квадратура). Более высокие уровни QAM строятся по тому же принципы, что и PSK. Если вас интересуют детали, вы без труда можете их найти в сети.
Теоретическая эффективность использования полосы пропускания:
Формат Эффективность (бит/с/Гц)
BPSK 1
QPSK 2
8-PSK 3
16-QAM 4
32-QAM 5
64-QAM 6
256-QAM 8

Чем сложнее схема модуляции, тем более пагубное воздействие на нее оказывают искажения при передаче, и тем меньше расстояние от базовой станции, на котором сигнал может быть успешно принят.
Теоретически возможны PSK и QAM схемы еще более высокого уровня, но на практике при их использовании возникает слишком большое количество ошибок.
Теперь, когда мы рассмотрели основные моменты, можно написать какие схемы модуляции применяются в сетях WiMax.

Модуляция сигнала в сетях WiMax.

В WiMax используется «динамическая адаптивная модуляция», которая позволяет базовой станции делать выбор между пропускной способностью и максимальным расстоянием до приемника. Чтобы увеличить дальность, базовая станция может переключиться между 64-QAM, 16-QAM и QPSK.

Заключение.

Я надеюсь, что у меня получилось соблюсти баланс между популярностью изложения и техничностью содержания. Если данная статья окажется востребованной, я продолжу работать в этом направлении. Технология WiMax имеет множество нюансов, о которых можно рассказать.

где A и φ 0 – постоянные, ω – несущая частота.

Информация кодируется фазой φ(t) . Так как при когерентной демодуляции в приемнике имеется восстановленная несущая s C (t) = Acos(ωt +φ 0) , то путем сравнения сигнала (2) с несущей вычисляется текущий сдвиг фазы φ(t) . Изменение фазы φ(t) взаимнооднозначно связано с информационным сигналом c(t).

Двоичная фазовая модуляция (BPSK – BinaryPhaseShiftKeying)

Множеству значений информационного сигнала {0,1} ставится в однозначное соответствие множество изменений фазы {0, π}. При изменении значения информационного сигнала фаза радиосигнала изменяется на 180º. Таким образом, сигнал BPSK можно записать в виде

Следовательно, s (t )= A ⋅2(c (t )-1/2)cos(ωt + φ 0) .Таким образом, для осуществленияBPSK модуляции достаточно умножить сигнал несущей на информационный сигнал, который имеет множество значений {-1,1}. На выходе baseband-модулятора сигналы

I (t)=A ⋅2(c (t )-1/2), Q(t)=0

Временная форма сигнала и его созвездие показаны на рис.3.

Рис. 12.Временная форма и сигнальное созвездие сигнала BPSK:a– цифровое сообщение; б – модулирующий сигнал; в – модулированное ВЧ-колебание; г – сигнальное созвездие

Квадратурная фазовая модуляция (QPSK – QuadraturePhaseShiftKeying)

Квадратурная фазовая модуляция является четырехуровневой фазовой модуляцией (M=4), при которой фаза высокочастотного колебания может принимать 4 различных значения с шагом, кратным π / 2 .

Соотношение между сдвигом фазы модулированного колебания из множества {±π / 4,±3π / 4} и множеством символов цифрового сообщения {00, 01, 10, 11} устанавливается в каждом конкретном случае стандартом на радиоканал и отображается сигнальным созвездием, аналогичным рис.4. Стрелками показаны возможные переходы из одного фазового состояния в другое.

Рис. 13. Сигнальное созвездие модуляции QPSK

Из рисунка видно, что соответствие между значениями символов и фазой сигнала установлено таким образом, что в соседних точках сигнального созвездия значения соответствующих символов отличаются лишь в одном бите. При передаче в условиях шума наиболее вероятной ошибкой будет определение фазы соседней точки созвездия. При указанном кодировании, несмотря на то, что произошла ошибка в определении значения символа, это будет соответствовать ошибке в одном (а не двух) бите информации. Таким образом, достигается снижение вероятности ошибки на бит. Указанный способ кодирования называется кодом Грея.

Многопозиционная фазовая модуляция (M-PSK)

M-PSK формируется, как и другие многопозиционные виды модуляции, путем группировки k = log 2 M бит в символы и введением взаимно-однозначного соответствия между множеством значений символа и множеством значений сдвига фазы модулированного колебания. Значения сдвига фазы из множества отличаются на одинаковую величину. Для примера на рис.4 приведено сигнальное созвездие для 8-PSK с кодированием Грея.

Рис. 14. Сигнальное созвездие модуляции 8-PSK

Амплитудно-фазовые виды модуляции (QAM)

Очевидно, для кодирования передаваемой информации можно использовать не один параметр несущего колебания, а два одновременно.

Минимальный уровень символьных ошибок будет достигнут в случае, если расстояние между соседними точками в сигнальном созвездии будет одинаковым, т.е. распределение точек в созвездии будет равномерным на плоскости. Следовательно, сигнальное созвездие должно иметь решетчатый вид. Модуляция с подобным видом сигнального созвездия называется квадратурной амплитудной модуляцией (QAM – QuadratureAmplitudeModulation).

QAM является многопозиционной модуляцией. При M=4 она соответствует QPSK, поэтому формально считается для QAM M ≥ 8 (т.к. число бит на символ k = log 2 M ,k∈N , то M может принимать только значения степеней 2: 2, 4, 8, 16 и т.д.). Для примера на рис.5 приведено сигнальное созвездие 16-QAM с кодированием Грея.

Рис. 15. Сигнальное созвездие модуляции 16 –QAM

Частотные виды модуляции (FSK, MSK, M-FSK, GFSK, GMSK).

В случае осуществления частотной модуляции параметром несущего колебания – носителем информации – является несущая частота ω(t) . Модулированный радиосигнал имеет вид:

s(t)= Acos(ω(t)t +φ 0)= Acos(ω c t +ω d c(t)t +φ 0)=

Acos(ω c t +φ 0) cos(ω d c(t)t) − Asin(ω c t+φ 0)sin(ω d c(t)t),

где ω c – постоянная центральная частота сигнала, ω d – девиация (изменение) частоты, c(t) –информационный сигнал, φ 0 –начальная фаза.

В случае, если информационный сигнал имеет 2 возможных значения, имеет место двоичная частотная модуляция (FSK – FrequencyShiftKeying). Информационный сигнал в (4) является полярным, т.е. принимает значения {-1,1}, где -1 соответствует значению исходного (неполярного) информационного сигнала 0, а 1 – единице. Таким образом, при двоичной частотной модуляции множеству значений исходного информационного сигнала {0,1} ставится в соответствие множество значений частоты модулированного радиосигнала {ω c −ω d ,ω c +ω d } . Вид сигнала FSK изображен на рис.1.11.

Рис. 16. Сигнал FSK: а – информационное сообщение; б- модулирующий сигнал; в – модулирование ВЧ-колебание

Из (4) следует непосредственная реализация FSK-модулятора: сигналы I(t) и Q(t) имеют вид: I (t) = Acos(ω d c(t)t) , Q(t) = Asin(ω d c(t)t) . Так как функции sin и cos принимают значения в интервале [-1..1], то сигнальное созвездие сигнала FSK – окружность с радиусом A.

2.4.4. Примеры реализации BPSK, QPSK и QAM видов модуляции. Основы теории мобильной и беспроводной связи

2.4.4. Примеры реализации BPSK, QPSK и QAM видов модуляции

При формировании широкополосного радиосигнала в пределах отведенного диапазона частот модуляцию несущей (в системе с прямым расширением спектра на одной несущей) или поднесущих в системе OFDM осуществляют битовыми импульсами, поступающими с выхода кодера канала. В последовательности таких бит содержится и полезная информация, и служебная, и вся необходимая управляющая информация. Используют так называемые спектрально эффективные виды модуляции, с помощью которых за одну посылку удается передать информацию сразу об т битах. Такую посылку называют символом. Формируется минимально необходимая ширина спектра, определяемая видом модуляции. Спектрально эффективные виды модуляции, содержащие в одном символе информацию из т бит, относятся к m -позиционным (m -ичным) системам модуляции. К числу таких методов модуляции относятся BPSK, QPSK, QAM и различные их варианты.

Фазовая модулящия BPSK и QPSK

Радиосигнал при бинарной фазовой манипуляции (называемой также двоичной ФМ или ФМ-2) BPSK (Binary Phase Shift Keying) можно представить в виде:

То есть модулированный сигнал имеет вид гармонических колебаний, фаза которых в зависимости от передаваемого символа +1 или -1 может меняться скачком на .

Рассмотрим частный случай, как правило, используемый в цифровых системах передачи, когда форма символа является прямоугольной:

(2.18)

Таким образом,

Спектральную плотность мощности модулирующего процесса при форме символа (3.18) вычисляем как преобразование Фурье:

Поэтому спектральная плотность мощности радиосигнала может быть получена непосредственно из спектра модулирующего сигнала:

а физический спектр (т. е. только для положительных частот) ФМ-2 радиосигнала в рассматриваемом случае имеет вид:

С целью последующего сравнения спектров для различных способов модуляции и увеличения диапазона возможных значений при построении соответствующих графиков введем нормировку спектра на его максимальное значение и используем логарифмический масштаб по оси ординат:

(2.20)

Здесь введено обозначение скорости передачи информации , так как

при ФМ-2 за время длительности символа (в секундах) передается 1 бит. Произведение является безразмерным и часто используется при построении графиков спектров для различных способов модуляции.

На рис. 2.16 представлен график функции физической спектральной плотности из (2.19) от нормированного значения (на графике для краткости обозначено буквой ). Для рассматриваемого примера график обозначен как и показан пунктиром.

Спектральная плотность мощности для сигнала с квадратурной фазовой модуляцией QPSK (Quadrature Phase Shift Keying) может быть получена аналогично спектральной плотности BPSK-сигнала. Запишем для общности сигнал QPSK в виде:

где функции

синфазная и квадратурная компоненты модулирующего сигнала; импульс теперь имеет длительность в два раза большую длительности импульса Последовательность содержит нечетные, а последовательность - четные символы исходнойпоследовательности. Здесь, как и в предыдущем случае, будем полагать, что элементы исходной последовательности являются дискретными случайными величинами, принимающими с равной вероятностью значения b или - b; элементы с разными значениями индексов независимы.

Каждое слагаемое в (2.21) имеет вид, аналогичный виду ФМ-2 сигнала, и отличается только тем, что теперь длительность одного символа равна 2Тс. Если заменить в формуле спектральной плотности ФМ-2 сигнала v(t) на g(t) и Т C на 2Т C то получим выражение для спектральной плотности QPSK-сигнала:

График этой функции представлен на рис. 2.16 сплошной линией и обозначен Gs 2(f ) . Ширина лепестков спектра QPSK-сигнала в два раза меньше ширины спектра ФМ-2-сигнала при той же скорости передачи информации (поскольку аргумент синуса стал в два раза больше). Однако скорость убывания боковых лепестков остается такой же. Впрочем, важнее то, что ширина основного лепестка многопозиционного сигнала становится меньше.

Рис. 2.16. Зависимость спектральной плотности от нормированного значения (f~f 0)/R6

Подчеркнем, что в соответствии с последней формулой для определения G s (f) максимальные значения боковых лепестков спектра убывают как 1/(f - f 0 ) 2 . Первый боковой лепесток на 13 дБ ниже основного лепестка на частоте несущего колебания, второй - на 18 дБ и т. д. То есть спектральная плотность мощности убывает сравнительно медленно при отклонении от частоты несущего колебания. Поэтому мощность внеполосных излучений для этого способа модуляции при прямоугольной форме элементарного символа достаточно велика, что является недостатком данного типа радиосигнала.

В качестве ширины физического спектра ФМ-2 радиосигнала часто принимают ширину основного лепестка между ближайшими нулями, которая равна Δf= 2/Т с, т. е. где (f-f 0)Tc = ±1. В этой полосе содержится примерно 95% мощности этого сигнала.

Схема модулятора получается наиболее простой (рис. 2.17, а). Модулирующие импульсы могут иметь значение +1 для передачи логической 1 и -1 - для передачи логического 0. Одному биту передаваемого сообщения соответствует один символ модулированного колебания в виде гармонического колебания с начальной фазой 0 или π. Такое состояние символа удобно изображать в виде созвездия состояний, как это показано на рис. 2.17, б.

Модуляцию QPSK (Quadrature Phase Shift Keying) можно представить как сдвоенный метод BPSK, в котором одно BPSK имеет сдвиг фазы на +π /4 и на –π/4 , а другое на +3π /4 и -/4 (или /4, +7π/4, +3π /4 и +5π/4 соответственно). Поэтому такой вид модуляции еще называют четырехуровневой PSK (ФМ-4). При таком способе модуляции каждой сигнальной посылке модулированного сигнала соответствуют два бита. Например, пусть:

Такой способ удобно реализовать с помощью квадратурной схемы модуляции. Передаваемый последовательный поток битов преобразуют в параллельный (например, разделяя на нечетные и четные биты). Поток с нечетными битами подают на модулятор, куда также подаются с генератора (синтезатора) опорной частоты колебания несущей частоты cos (ω 0 t ) . Этот канал модуляции называют синфазным и обозначают буквой I . Поток с четными битами подают на другой модулятор. На второй модулятор подают такую же опорную частоту, что и на первый модулятор, но сдвинутую по начальной фазе на -π/2, т. е. колебания . Поскольку косинус и синус являются ортогональными функциями, то о них говорят, что они находятся в квадратуре. Поэтому второй канал модуляции называют квадратурным и обозначают буквой Q. На практике колебания опорной частоты для обоих каналов модуляции получают от одного и того же синтезатора. Это гарантирует совместную стабильность опорной частоты в обоих каналах. На синфазный канал подаются косинусоидальные колебания, а на квадратурный канал подаются колебания с предварительной задержкой на четверть периода. При расчетах удобно считать амплитуды колебаний опорной частоты в обоих каналах равными 1/√2 с тем, чтобы амплитуда суммарных колебаний получилась равной 1. С выхода модуляторов обоих каналов сигналы суммируются, и получается выходной сигнал квадратурного модулятора. Схема модулятора приведена на рис. 2.18.

Поскольку входной поток разбит на два параллельных, то для сохранения прежней скорости потока длительности битовых импульсов в параллельных потоках растягиваются по времени вдвое, соответственно вдвое уменьшается скорость в параллельных каналах. Вдобавок для обеспечения скачков фазы на битовые импульсы в параллельных потоках делают двуполярными так, что, например, модулирующие импульсы будут иметь значение +1 для передачи логической 1 и -1 - для передачи логического 0. Обозначая амплитуды модулирующих импульсов в квадратурных каналах как и колебания на выходе QPSK модулятора можно записать:

Поскольку за один символ передается два бита, то сигнальное созвездие будет иметь вид, показанный на рис. 2.19.

Следует отметить, что на сигнальном созвездии положения всех значений символов равноудалены от начала координат. Это означает равенство амплитуд всех символьных колебаний. В принципе, необязательно, чтобы значения символов располагались по углам квадрата. Они могут располагаться и по окружности. Можно также отметить, что можно еще больше усложнить способность модуляции, делая сдвиги фаз на меньший угол. Тогда в каждом символе будет передаваться большее количество бит и на сигнальном созвездии будет больше точек. Но тогда труднее будет в условиях воздействия шумов различать фазовые углы на приеме, поэтому возрастает вероятность ошибочного восстановления при приеме символов.

Квадратурная амплитудная модуляция QAM

Квадратурная амплитудная модуляция КАМ - QAM (Quadrature Amplityde Modulation) служи! примером модуляции с большим числом бит в символах. Следовательно, можно получить и большее число состояний. Название 16-QAM означает 16 состояний на сигнальном созвездии, а 64-QAM означает 64 состояния. КАМ совмещает в себе амплитудную и фазовую модуляции. Выходные колебания образуются сложением модулированных сигналов квадратурных каналов, как и при фазовой манипуляции, однако обе несущие теперь модулированы и по амплитуде. Импульсные сигналы в параллельном потоке однополярные. Логической 1 соответствует сигнал ±A m . (знак минус соответствует смене фазы модулированных колебаний на π ;), а логическому 0 соответствует нулевой уровень. Причем логическая 1 создает на выходе модулятора колебания с амплитудой A m , а логический 0 не создает колебаний. Выходной сигнал, таким образом, будет модулирован (точнее, манипулирован) и по фазе, и по амплитуде. Если входной поток битов после преобразования из последовательного в параллельный преобразовать в многоуровневый импульсный сигнал, то на выходе модулятора будут получаться фазоманипулированные многоуровневые по амплитуде колебания. Схема КАМ модулятора по принципу действия совпадает со схемой QPSK (см. рис. 2.15). Разница лишь в том, что в преобразователе потока из последовательного в параллельный производится многоуровневое преобразование битовых символов. К настоящему времени освоена техника создания QPSK-модуляторов, имеющих 256 и более состояний.

Один канальный символ сигнала при таком способе модуляции можно представить следующим равенством:

в котором является комплексной амплитудой этого канального символа, т = 1, 2,...,М. При построении сигнального созвездия этого сигнала удобнее использовать вещественную и мнимую части комплексной амплитуды:

где а m и b m - координаты m-й точки сигнального созвездия КАМ-сигнала.

На рис. 2.20 представлено сигнальное созвездие КАМ-16 (большее число состояний усложнит рисунок).

Рис. 2.20. Сигнальное созвездие КАМ-сигнала

Необходимо отметить, что разные канальные символы этого сигнала имеют разную энергию; расстояние между разными сигнальными точками также оказывается различным. В результате вероятность перепутывания символов в приемнике для разных символов оказывается разной.

Один канальный символ такого сигнала может переносить n= log 2 m информационных битов. В частности, при m =16 имеем n=4. Поэтому если по-прежнему считать, что длительность одного бита равна то длительность одного канального символа KAM-сигналa равна Т KC = n Т c , Следовательно, при формировании этого сигнала поток информационных битов должен группироваться в блоки по n битов. Каждому блоку должен быть поставлен в соответствие один канальный символ. Установление такого соответствия называется сигнальным кодированием.

На рис. 2.20 сигнальное созвездие имеет форму квадрата или квадратной решетки, в узлах которой располагаются сигнальные точки. Это не единственно возможная форма сигнального созвездия, и не всегда лучшая. Сигнальные созвездия могут иметь форму, например, креста, круга, что часто оказывается необходимым при больших значениях т. Удаление от центра координат соответствует уровню амплитуды колебаний. В современных системах связи значения этого параметра могут превышать 1024.

При больших значениях т задавать множества возможных координат сигнальных точек проще с помощью целых чисел, нумеруя сигнальные точки от начала координат. Например, для квадратной сигнальной решетки, изображенной на рис. 2.20, можно ввести обозначения a min и b min для координат точек ближайших к началу координат. Тогда, если все соседние точки имеют одинаковые расстояния между собой вдоль каждой оси, то координаты остальных точек можно выразить через значения координат ближайших точек с помощью соотношений:

где индексы k и I принимают целочисленные значения. Например, для созвездия на рис. 2.20 значения индексов принадлежат множеству {-3, -1, +1, +3}. Совокупность всех точек этого сигнального созвездия может быть задана с помощью матрицы:

Ширина спектра КАМ-сигнала примерно такая же, как и m-ичного ФМ-сигнала. Однако данный способ модуляции может обеспечить меньшую вероятность ошибки на бит передаваемой информации и поэтому иногда оказывается более предпочтительным. Следует, однако, отметить, что, так как амплитуда КАМ-сигнала принимает различные значения, то применение этого способа модуляции сопровождается повышением требований к линейности канала передачи.

В силу ортогональности спектров наличие небольшого остатка боковых лепестков спектров поднесущих мало влияет на качество различимости, поэтому требования к фильтрам в каналах поднесущих, ограничивающим боковые лепестки, могут быть не столь жесткими, что упрощает их схемотехнику и уменьшает стоимость. Выделение поднесущих в приемнике из суммарного сигнала производится с помощью быстрого преобразования Фурье. Трафик пользователя, получившего малое число поднесущих, требует меньше вычислительных ресурсов на преобразование Фурье, что экономит время и стоимость передачи.

Разные способы модуляции позволяют получить разные скорости передачи при разных отношениях сигнал/шум. Использование обеспечивает более высокую скорость передачи, но требует обеспечения большей величины отношения сигнал/шум. Поэтому такой способ целесообразно применять для пользователей, находящихся вблизи базовой станции. На удалении применяют QPSK и BPSK, позволяющие работать при меньших значениях сигнал/шум, Система автоматически переходит с одного вида модуляции на другой при смене условий передачи (отношения сигнал/шум - S/N). Схематично области применения разных способов модуляции в зависимости от расстояния показаны на рис. 2.21.

Рис. 2.21. Условные зоны применения способов модуляции

Скорости кодирования при различных видах модуляции: BPSK- 1/2, QPSK - 1/2. 3/4, 16 QAM - 1/2, 2/3. 3/4, 64 QAM - 2/3, 3/4.

В табл. 2.1 приведены сравнительные данные по стандартам 802.16, 802.16-2004 и 802.16е.

Таблица 2.1. Сравнительные данныепо стандартам 802.16, 802.16-2004 и 802.16е

Параметры 802.16 802.16-2004 802.16е
Диапазон 10-66 ГГц Ниже 11 ГГц Ниже 11 ГГц
Условия использования Прямая видимость Прямая и непрямая видимость Прямая и непрямая видимость
Скорость передачи 32,0-134,4 Мбит/с 1,0-75,0 Мбит/с
Вил модуляции QPSK, 16 QAM. 64 QAM, одна несущая QPSK, 16 QAM, 64 QAM, одна несущая. Или QPSK, 16 QAM. 64 QAM. 256 QAM, дополнительно BPSK OFDM
Дуплексный разнос TDD/FDD TDDA/DD TDD/FDD
Ширина полосы 20,25 и 28 М1ц Изменяемая 1.25-20 МГц Изменяемая 1,25-20 МГц
Типовой радиус зоны покрытия 2-5 км 4-6 км 4-8 км

Пользователю могут быть предоставлены (теоретически) все поднесущие, что обеспечит максимально возможную в системе скорость (например. 75 или 134 Мбит/с). Следует понимать, что это максимальная скорость, которую может обеспечить система на передачу. Сюда входит и информационный трафик, и каналы управления и сигнализации, и т. п. Реальная скорость передачи трафика пользователя, конечно же, будет ниже. Например, при обеспечении 256 частотных поднесущих под трафик пользователей могут быть отданы лишь 192 поднесущих, 8 отводится под пилот-сигналы и 56 остаются пустыми в качестве защитного интервала. Уровень пилот-сигналов на 2.5 дБ выше, чем у остальных поднесущих. Распределение поднесущих в кадре из 256 поднесущих видно из рис. 2.22.

Рис. 2.22. Распределение поднесущих

На защитных интервалах несущие не излучаются и передача не ведется. В середине интервала частот поднесущих находится нулевая несущая DC (центральная несущая), означающая середину полосы частот. Излучения на ней нет.

Каждому пользователю может выделяться лишь часть поднесущих. Таким образом можно распределять поднесущие между пользователями (802.16- 2004) или динамически перераспределять их (802.16е), обеспечивая необходимые им скорости передачи.

На рис. 2.23 показано возможное распределение трафика пользователей 1, 2, 3 и т. д. по времени и по поднесущим. Показано условное распределение поднесущих трафика без показа защитных интервалов, пилот-сигналов и пр.

В системе WiMAX предполагается, что один из видов оплаты пользования услугами как раз будет плата за предоставляемые полосы частот или за обеспечиваемую скорость передачи.

Применение OFDM - весьма эффективный способ борьбы с межсимвольной интерференцией, вызванной наложением отраженных и задержанных во времени копий сигнала. Поскольку длительность битовой посылки стала NT б, то доля времени посылки, пораженной интерференцией, по сравнению с длительностью посылки стала намного меньше, чем в случае, когда при других способах модуляции длительность посылки была равна T б. Энергия непораженной части посылки становится достаточной для ее правильного восстановления. Растяжение битовой посылки во времени выбирается значительно больше среднестатистического времени действия помехи.

OFDM-сигнал имеет несколько замечательных свойств. Во-первых, общая ширина полосы занимаемых частот является минимальной. Следовательно, в отведенной под систему полосе частот можно разместить максимальное число поднесущих. Во-вторых, спектр суммарного сигнала является широким, и такой сигнал обладает всеми свойствами широкополосных сигналов. Следовательно, в условиях многолучевого распространения можно эффективно бороться с интерференцией. На этом положительные стороны OFDM-сигнала не заканчиваются. Поскольку спектр широкий, то глубокому замиранию за счет интерференции может оказаться подверженным в каждый момент времени не весь спектр, а лишь небольшой участок. В этом случае ухудшение наступит лишь для тех символов, которые модулировали пораженные поднесущие, т. е. лишь часть информации. Если же организовать с некоторой частотой проверку качества канала (например, с помощью специальных бит, вводимых в процессе передачи), то можно иметь оперативную информацию о качестве канала в каждом частотном участке. Следовательно, можно корректировать мощность на каждой поднесущей, значительно уменьшая негативное влияние интерференции или селективной помехи.

Как следует из названия, quadrature phase shift keying (QPSK) – квадратурная фазовая манипуляция является модификацией двоичной фазовой манипуляции - binary phase shift keying (BPSK). Вспомните, что метод BPSK на самом деле представляет собой DSBSC модуляцию с цифровым сообщением в качестве модулирующего сигнала. Важно отметить, что при BPSK модуляции информация передается последовательно бит за битом. QPSK также является разновидностью DSBSC модуляции, однако здесь передаются по два бита в течение каждого интервала времени, не используя другую несущую частоту.

В связи с тем, что при QPSK биты передаются парами, может возникнуть иллюзия, что скорость передачи в два раза выше, чем при BPSK. На самом деле, преобразование последовательности одиночных бит в последовательность сдвоенных бит обязательно снижает скорость передачи в два раза, что не позволяет получить выигрыш в скорости.

Тогда зачем этот метод модуляции нужен? Снижение в два раза скорости передачи сигналов методом QPSK позволяет занимать в два раз меньший участок радиочастотного спектра, чем BPSK сигнал. Это дает возможность увеличить количество абонентов в канале связи.

На рисунке 1 приведена блок-схема реализации математической модели QPSK модулятора.

На входе модулятора четные биты (с номерами 0, 2, 4 и т.д.) выделяются с помощью “расщепителя бит” из потока данных и перемножаются с несущей, формируя BPSK сигнал, обозначенный как PSKI. В то же время, нечетные биты (с номерами 1, 3, 5 и т.д.) также выделяются из потока данных и перемножаются с той же несущей, сдвинутой на 90°, формируя второй BPSK сигнал, обозначенный PSK Q . В этом и заключается принцип работы QPSK модулятора.

Перед передачей QPSK сигнала два BPSK сигнала просто складываются и, поскольку они имеют одну и ту же несущую частоту, эти сигналы занимают один и тот же участок спектра. Однако, для того чтобы разделить сигналы, несущие которых сдвинуты на 90º, требуется приемник с фазовым дискриминатором.

На рисунке 2 приведена блок-схема реализации математической модели QPSK демодулятора.

В приведенной схеме демодуляцию двух BPSK сигналов независимо и одновременно осуществляют два детектора на основе умножителей. На выходах детекторов появляются пары битов исходных данных, которые с помощью компаратора очищаются от искажений, и собираются в исходную последовательность с помощью 2-разрядного параллельно-последовательного преобразователя.

Чтобы понять, каким образом каждый детектор выделяет только один BPSK сигнал, а не оба вместе, вспомните, что детектирование DSBSC сигналов обладает “чувствительностью” к фазовому сдвигу. Таким образом, прием сообщения будет оптимальным, только в том случае, если несущие колебания передатчика и приемника будут точно совпадать по фазе. Важно отметить, что при фазовом рассогласовании 90º прием сообщения становится невозможным, т.к. амплитуда восстановленного сигнала становится равной нулю. Другими словами, сообщение полностью подавляется.

QPSK демодулятор данное обстоятельство превращает в преимущество. Обратите внимание, что детекторы произведения на рисунке 2 используют одну несущую, но для одного из детекторов несущая сдвинута на 90°. В этом случае один детектор восстанавливает данные из одного BPSK сигнала, одновременно подавляя другой BPSK сигнал, а второй детектор восстанавливает второй BPSK сигнал, подавляя первый BPSK сигнал.