Контроль денег

Лунный модуль аполлон конструкция. Различные варианты лунного модуля «Аполлона»

Каждый раз читая российские форумы в которых затрагивается тема полётов человека на Луну, я наталкиваюсь на абсолютное невежество среди форумчан (в т. ч. и среди технически образованных людей). В рунете распространено мнение, что лунный модуль, спроектированный и построенный фирмой Grumman Aerospace Corporation для высадки человека на поверхность Луны в рамках программы «Аполлон», сделан чуть-ли не из фольги. Мол толщина стенок его кабины настолько тонкая (наиболее часто говорят о трёх слоях фольги), что её можно пробить ногой, а прочность конструкции обеспечивается внутренним давлением. Это заблуждение среди отечественных читателей тянется с 1976 года, и базируется на неверной интерпретации фразы астронавта Джеймса Макдивитта (James Alton McDivitt), произнесённой им на одной из пресс-конференций перед полётом космического корабля «Аполлон-9». Изначально она была неверно интерпретирована советским писателем-фантастом и журналистом Владимиром Степановичем Губаревым, который написал популярную в СССР книгу «Космические мосты» (издана в 1976 году в Москве издательством «Молодая Гвардия»). Владимир Губарев пишет (цитата из книги):
«Р. Швейкарт должен быть очень осторожен. Одно неверное движение, и он повредит лунную кабину. Стенки её настолько тонки и непрочны, что человек может пробить их ногой, - заявил перед стартом Д. Макдивитт. - На Земле стенки лунной кабины во многих местах может повредить даже случайно уронённая отвёртка...»

Другой журналист, не менее популярный популяризатор космонавтики, коллега Губарева - Ярослав Кириллович Голованов пишет в известной книге «Правда о программе «APOLLO» (практически копирует текст своего коллеги, добавляя при этом своё мнение, которое является по-сути мнением дилетанта):
«- Швейкарт должен быть очень осторожен, - предупреждал Макдивитт. - Одно неверное движение, и он повредит лунный модуль. Стенки его настолько тонки и непрочны, что человек может пробить их ногой. На Земле стенки лунного отсека может повредить даже случайно оброненная отвёртка…
Я две недели рассматривал лунную кабину, которая стояла в зале, где разместилась пресса во время полета «Союза-19» и «Аполлона» в Хьюстоне. «Паучок» сделан из металлической фольги. Не из такой, конечно, в которую заворачивают шоколадные конфеты, но все-таки, если выбирать из двух определений: металлический лист или металлическая фольга - фольга точнее. В вакууме жесткость этой конструкции увеличивалась за счет внутреннего надува, но все-таки она оставалась весьма субтильной.» ()


Взлётная ступень лунного модуля LM-12 космического корабля «Аполлон-17». Фотография NASA AS17-149-22857

Мнение Ярослава Голованова о конструкции, «сделанной из фольги», и «увеличивающей свою жёсткость в вакууме» выглядит особенно нелепым, если посмотреть фотографии лунного модуля LTA-1, сделанные в Cradle Of Aviation Museum, расположенном в городе Ист-Гарден-Сити на Лонг-Айленде, штат Нью-Йорк:

LTA-1 (Lunar Test Article 1) представляет собой первый экземпляр лунного модуля (прототип), построенный в 1966 году, который конструктивно подобен серийным образцам, предназначенным для полётов в космос. До LTA-1 фирма Grumman Aerospace Corporation строила лишь полномасштабные макеты лунного модуля (т. н. Mock-Up"s: M-1, M-5, TM-1). Конструктивно эти макеты были выполнены из металла и дерева, предназначенные для представления заказчику (NASA), отработки компоновочных решений по размещению различного вспомогательного оборудования и тренировок астронавтов. Но силовая конструкция LTA-1, а также все системы (двигательные установки, их ПГС, электрооборудование и т. д.) были выполнены по рабочим чертежам с соблюдением всех технологических процессов. Данный экземпляр был предназначен для отработки процесса изготовления, сборки и дальнейшей отладки лунного модуля, когда ещё велось проектирование, а также для статических, динамических и электрических испытаний:


Стыковка взлётной и посадочной ступени лунного модуля LTA-1 в комнате для испытаний на кондуктивные электромагнитные помехи на предприятии Grumman Aerospace Corporation, город Бетпейдж, Лонг-Айленд, штат Нью-Йорк. Фотография NASA S67-22164

Основное конструктивное отличие LTA-1 от серийных образцов летавших в космос - передний люк, предназначенный для выхода и входа экипажа из взлётной ступени лунного модуля. На LTA-1 он круглой формы. Начиная с LTA-8 и на всех серийных образцах лунного модуля, по требованию астронавтов, люк был выполнен прямоугольной формы. Проведённые на борту «летающей лаборатории» NASA (переделанный топливозаправщик Boeing KC-135A Stratotanker) эксперименты показали, что в условиях лунной гравитации астронавтам было гораздо удобнее протискиваться в скафандре с ранцевой системой жизнеобеспечения PLSS именно через люк прямоугольной формы). В 1974 году, после завершения программы «Аполлон», LTA-1 был передан на хранение в Национальный музей авиации и космонавтики Смитсоновского института, расположенном в городе Вашингтон (округ Колумбия), а в июне 1998 года передан для реставрации и дальнейшей экспозиции в Cradle Of Aviation Museum, где и находится в настоящее время:

Лунный модуль космического корабля «Аполлон» конструктивно состоит из двух ступеней: посадочной и взлётной. Посадочная ступень оборудована жидкостным ракетным двигателем (ЖРД) для осуществления схода с орбиты искусственного спутника Луны, выполнения захода на посадку и мягкого прилунения. Посадка осуществляется на четырёхножное шасси с тарельчатыми опорами. Перегрузка при прилунении снижается за счёт укорачивания ног шасси, которые представляют собой телескопические штанги. Кинетическая энергия при ударе о лунную поверхность поглощается сминаемым заполнителем сотовой конструкции из алюминиевого сплава. Экипаж, состоящих из двух астронавтов (командир и второй пилот), находится в герметичной кабине взлётной ступени, которая установлена сверху над посадочной. Спуск астронавтов на поверхность Луны осуществляется по лестнице, закреплённой на одной из телескопических ног посадочного шасси, расположенной со стороны переднего люка. Взлётная ступень оборудована ЖРД для взлёта с поверхности (стартовым столом на этом этапе служит посадочная ступень) и выхода на орбиту искусственного спутника Луны. Также взлётная ступень оборудована реактивной системой управления (РСУ). РСУ предназначена для управления не только взлётной ступенью, но и всем лунным модулем (когда он находится в посадочной конфигурации) по шести степеням свободы. ЖРД РСУ могут работать в группе или отдельно - непрерывно или импульсно. Т. к. взлётная ступень вмещала в себя экипаж, то её конструкция представляет наибольший интерес в рамках рассматриваемого массового заблуждения.

Основная конструкция взлётной ступени лунного модуля представляет собой полумонококовую конструкцию, выполненную из хорошо сваривающегося дюралюминиевого сплава 2219 (основной легирующий элемент медь) и высокопрочного деформируемого алюминиевого сплава 7075-T6 (основной легирующий элемент - цинк), имеющие изотропные характеристики. Основная конструкция состоит из трёх главных частей: кабины экипажа, центральной секции и заднего отсека оборудования:

Герметизируются только кабина экипажа и центральная секция. Эти две части представляют собой сварную и кованную конструкцию, сформированную оболочкой цилиндрической формы и подкрепленую прикованными по окружности стрингерами, сформированными из листового дюралюминия, а также поперечными фрезерованными лонжеронами, к которым крепятся элементы конструкции взлётной ступени лунного модуля (балки, соединительные кронштейны и т. д.). В цилиндрической части кабины экипажа над рабочим местом командира сделан проём стыковочного иллюминатора, усиленный по периметру. Передняя часть кабины экипажа образованна плоскими фрезерованными панелями из листового дюралюминия, также подкреплёнными стрингерами и лонжеронами на сгибах. В передней части кабины экипажа находятся два треугольных проёма для иллюминаторов переднего обзора, усиленные по периметру, и между ними, ниже, проём для переднего люка (круглой или прямоугольной формы).
Согласно техническим отчётам по лунному модулю (архивы NTRS), толщина стенок оболочки кабины экипажа и центральной секции взлётной ступени лунного модуля доходит до 0,065 дюймов (1,651 мм). Это значение на порядок превосходит толщину фольги (в большинстве стран общепринятым определением фольги является значение толщины листового металла до 0,2 мм), и толще обшивки сверхзвуковых пассажирских самолётов Ту-144 (1,2 мм) и Concorde (1,5 мм), которые эксплуатировались в более жёстких условиях, чем лунный модуль: аэродинамический нагрев при полётах на больших сверхзвуковых скоростях в стратосфере, циклические напряжения в герметичной конструкции фюзеляжа из-за постоянных перепадов давления, аэродинамические воздействия (изгиб, крутка) и т. д. В процессе эксплуатации самолётов Ту-144 и Concorde случаев «пробивания ногой обшивки» зарегистрировано не было.
В отдельных местах (ненапряжённых), с целью уменьшения веса конструкции, толщина стенок уменьшена методом химического фрезерования до 0,012 дюймов (0,3 мм).
К основной конструкции взлётной ступени лунного модуля крепится двигательная установка, состоящая из жёстко закреплённого в центральной секции взлётного ЖРД Rocketdyne RS-18 (разработанного на основе двигателя Bell 8247), двух топливных баков для него: с левого борта от центральной секции с помощью поддерживающих стержневых балок устанавлен сферический бак горючего («Аэрозин-50»), с правого борта от центральной секции аналогично установлен сферический бак окислителя (четырёхокись азота).
К задней части центральной секции, а также к кабине экипажа через кронштейны крепятся стержневые балки, держащие четыре блока РСУ с шестнадцатью ЖРД Marquardt R-4D (сгруппированы по четыре двигателя). Четыре топливных бака цилиндрической формы с полусферическими днищами расположены симметрично со стороны левого и правого борта центральной секции. Топливные компоненты аналогичны используемым в основной двигательной установке. Между баками с горючим и окислителем для ЖРД РСУ с каждой стороны установлены шарообразные баки с гелием для вытеснительной системы этих двигателей. К верхней части центральной секции крепятся два сферических бака с водой, а также блоки передающих антенн.
Вытеснительный газ (гелий) для основной двигательной установки также хранится в сферических баках. Распожены они в заднем отсеке оборудования вместе с двумя модулями редуцирования давления гелия, управляющим клапаном основной двигательной установки (управляет подачей топливных компонентов, вытесняемых давлением наддува гелием, в камеру сгорания взлётного ЖРД RS-18) и управляющий клапан с перекрёстным управлением для ЖРД РСУ. Также в заднем отсеке оборудования над сферическими баками с гелием расположены два сферических бака с газообразным кислородом для системы жизнеобеспечения экипажа. На специальной выносной панели заднего отсека оборудования крепятся блоки систем радиоэлектронного оборудования лунного модуля отвечающие за радиосвязь, работу бортовых систем (сигнализация, предупреждение) и блоки бортовой цифровой вычислительной машины (БЦВМ), отвечающей за навигацию. Все системы связаны между собой многожильными кабелями и проводами, проходящими по всей поверхности основной конструкции взлётной ступени лунного модуля. Питание электроэнергией осуществляется за счёт двух серебряно-цинковых аккумуляторных батарей.
Чтобы защитить основную конструкцию взлётной ступени лунного модуля и все системы описанные выше от воздействия космического пространства (перепады температуры в вакууме, микрометеориты, воздействие струй ракетных двигателей), применяются термоизоляционное покрытие и микрометеоритная защита, а также специальная термозащитная краска, наносимая на микрометеоритную защиту.
Термоизоляционное покрытие представляет собой многосегментное покрытие из специальных многослойных одеял, каждый сегмент которых натягивается на каркас основной конструкции взлётной ступени. Крепление осуществляется с помощью специальных шпилек*, которые крепятся либо к специальным кронштейнам, либо к силовому набору (к стрингерам и лонжеронам), обеспечивая минимальный зазор 25,4 мм между внутренней стороной одеяла и внешней стороной оболочки кабины экипажа и центральной секции, а также на ферменную конструкцию, окружающую топливные баки главной двигательной установки и задний отсек оборудования. Каждое одеяло состоит из набора следующих слоёв (если считать начиная с внутренней части): один слой алюминизированного каптона (плёнка из полиамида разработки компании DuPont, толщина 0,5 мм), десять слоёв алюминизированного майлара (плёнка на основе синтетического полиэфирного волокна разработки компании DuPont, толщина каждого слоя 0,15 мм), пятнадцать слоёв алюминизированного каптона (толщина каждого слоя 0,5 мм). Количество слоёв одеял термоизоляционного покрытия может варьироваться в зависимости от места нахождения сегмента. В районе воздействия струй ЖРД РСУ сверху вышеперечисленных слоёв накладывается дополнительное термоизоляционное покрытие, состоящее из одного слоя никелевой фольги (толщина 0,5 мм), сетки из инконеля, и инконелевого покрытия толщиной 1,25 мм. Одеяла между собой стыкуются внахлёст и удерживаются с помощью специальных скоб. Стыки заклеиваются липкими лентами:


Схема установки ферменного каркаса внешнего корпуса на основную конструкцию взлётной ступени лунного модуля


Схема установки термоизоляционного покрытия на основную конструкцию взлётной ступени лунного модуля

Микрометеоритная защита представляет собой внешнюю оболочку взлётной ступени лунного модуля и состоит из тонких листов из алюминиевого сплава толщиной до 0,5 мм, устанавливаемая поверх одеял термоизоляционного покрытия:


Схема установки микрометеоритной защиты (внешняя оболочка) на термоизоляционное покрытие взлётной ступени лунного модуля

Её раскрой по секторам идентичен. Крепление осуществляется с помощью тех же специальных шпилек, с помощью которых к основной конструкции взлётной ступени лунного модуля крепится термоизоляционное покрытие. Шпильки над одеялами имеют продолжение, что обеспечивает минимальный зазор 25,4 мм между ними и листами защиты. Стыки между листами заклеиваются липкой лентой.
Во избежание вспучивания термоизоляционного покрытия и микрометеоритной защиты из-за резкого падения окружающего давления во время набора ракетой-носителем высоты, в одеялах и листах проделаны оконтованные вентиляционные отверстия, через которые происходит выравнивание давления.
В районе воздействия струй ЖРД РСУ микрометеоритная защита покрывается специальной термозащитной краской чёрного цвета (ей покрыта большая часть микрометеоритной защиты кабины экипажа).
Если посмотреть на многочисленные фотографии взлётной ступени лунного модуля, то для обывателя создаётся впечатление, что внешняя оболочка из тонких листов алюминия, местами проклеенная липкой лентой, и есть герметичная обочка, которую «легко пробить ногой», т. к. она «сделана из фольги». Это заблуждение было наглядно продемонстрировано Ярославом Головановым в известной для любителей космонавтики книге.

P. S.: Подробный фотоотчёт (Walk Around, 57 фотографий взлётной ступени и 49 фотографий посадочной ступени) по лунному модулю LTA-1 можно посмотреть


2. Технические данные

Космический корабль «Аполлон» состоит из командного и служебного отсеков, лунного корабля и системы аварийного спасения.

Командный и служебный отсеки

Командный отсек является центром управления полётом. Все члены экипажа в течение полёта находятся в командном отсеке, за исключением этапа высадки на Луну. Командный отсек, в котором экипаж возвращается на Землю — всё, что остаётся от системы «Сатурн-5» — «Аполлон» после полёта на Луну. Служебный отсек несёт основную двигательную установку и системы обеспечения корабля «Аполлон».

Командный отсек разработан компанией North American Rockwell и имеет форму конуса со сферическим основанием, диаметр основания 3920 мм, высота конуса 3430 мм, угол при вершине 60°, номинальный вес 5500 кг.

Командный отсек имеет герметическую кабину с системой жизнеобеспечения экипажа, систему управления и навигации, систему радиосвязи, систему аварийного спасения и теплозащитный экран.

Оборудование командного отсека

Командный отсек корабля «Аполлон»

В передней негерметизируемой части командного отсека размещены стыковочный механизм и парашютная система посадки, в средней части 3 кресла астронавтов, пульт управления полётом и системой жизнеобеспечения и радиооборудование; в пространстве между задним экраном и гермокабиной размещено оборудование реактивной системы управления.

Стыковочный механизм и деталь лунного корабля с внутренней нарезкой совместно обеспечивают жёсткую стыковку командного отсека с лунным кораблём и образуют туннель для перехода экипажа из командного отсека в лунный корабль и обратно.

Система жизнеобеспечения экипажа корабля «Аполлон»

Система жизнеобеспечения экипажа космического корабля «Аполлон» разработана и изготовлена фирмой Airsearch. Система обеспечивает поддержание в кабине корабля температуры в пределах 21-27 °C, влажности от 40 до 70 % и давления 0,35 кг/см². При подготовке к старту и при старте атмосфера в кабине состоит из 60 % кислорода и 40 % азота, в полёте эта смесь стравливается и заменяется чистым кислородом.

Система рассчитана на 4-суточное увеличение продолжительности полёта сверх расчётного времени, необходимого для экспедиции на Луну. Поэтому предусматривается возможность регулировки и ремонта силами экипажа, одетого в скафандры.

Имеется аварийная кислородная система, которая включается автоматически и обеспечивает подачу кислорода при падении давления в кабине, например при пробое кабины метеоритом.

В процессе квалификационных испытаний система жизнеобеспечения прошла проверку, имитирующую 14-суточный полет корабля с экипажем из трёх человек.

Система аварийного спасения

Разработана компанией North American Rockwell. Если возникнет аварийная ситуация при старте ракеты-носителя «Аполлон» или потребуется прекратить полет в процессе выведения корабля «Аполлон» на орбиту Земли, спасение экипажа осуществляется отделением командного отсека от ракеты-носителя с последующей посадкой его на Землю на парашютах.

Система связи командного отсека

Система связи командного отсека обеспечивает:

  • Двухстороннюю микрофонную связь экипажа с Землёй.
  • Передачу с борта корабля телеметрической информации и приём команд с Земли.
  • Приём с Земли и ретрансляцию на станции слежения закодированного шума на несущей частоте для определения курса и дальности корабля.
  • Передачу на Землю телевизионных изображений. Для этих целей на командном отсеке установлена унифицированная в S-диапазоне и две УКВ приемо-передающих радиостанции. Антенная система состоит из четырёх малонаправленных антенн и одной остронаправленной. Последняя имеет 4 параболических излучателя диаметром по 80 см, смонтирована на служебном отсеке и поворачивается в рабочее положение после выхода корабля на траекторию полёта к Луне.

Служебный отсек

Служебный отсек корабля «Аполлон»

Служебный отсек корабля «Аполлон» также разработан компанией North American Rockwell. Имеет форму цилиндра длиной 3943 мм и диаметром 3914 мм. С учётом длины сопла маршевого ЖРД, которое выходит наружу из корпуса, общая длина служебного отсека 7916 мм. От момента старта до входа в атмосферу служебный отсек жёстко соединён с командным отсеком, образуя основной блок корабля «Аполлон». Перед входом в атмосферу командный отсек отделяется от служебного отсека.

Общий вес служебного отсека 23,3 т, в том числе 17,7 т топлива. В отсеке размещена маршевая двигательная установка с ЖРД фирмы Aerojet General, ЖРД системы реактивного управления фирмы Marquardt, топливные баки и агрегаты двигательных установок и энергетическая установка на водородо-кислородных топливных элементах.

Служебный отсек обеспечивает все манёвры корабля на траектории полёта к Луне, коррекцию траектории, выход на орбиту Луны, переход с орбиты Луны на траекторию полёта к Земле и коррекцию траектории возвращения.

Лунный модуль

Лунный модуль корабля «Аполлон»

Лунный модуль корабля «Аполлон» разработан компанией «Grumman» и имеет две ступени: посадочную и взлётную. Посадочная ступень, оборудованная самостоятельной двигательной установкой и шасси, используется для снижения лунного корабля с орбиты Луны и мягкой посадки на лунную поверхность, и также служит стартовой площадкой для взлётной ступени. Взлётная ступень, с герметичной кабиной для экипажа и самостоятельной двигательной установкой, после завершения исследований стартует с поверхности Луны и на орбите стыкуется с командным отсеком. Разделение ступеней осуществляется при помощи пиротехнических устройств.

Взлётная ступень

Взлётная ступень лунного модуля имеет три основных отсека: отсек экипажа, центральный отсек и задний отсек оборудования. Герметизируются только отсек экипажа и центральный отсек, все остальные отсеки лунного корабля негерметизированы. Объём герметической кабины 6,7 м³, давление в кабине 0,337 кг/см², атмосфера — чистый кислород. Высота взлётной ступени 3,76 м, диаметр 4,3 м. Конструктивно взлётная ступень состоит из шести узлов: отсек экипажа, центральный отсек, задний отсек оборудования, связка крепления ЖРД, узел крепления антенн, тепловой и микрометеорный экран. Цилиндрический отсек экипажа диаметром 2,35 м, длиной 1,07 м полумонококовой конструкции из хорошо сваривающихся алюминиевых сплавов.

Два рабочих места для астронавтов оборудованы пультами управления и приборными досками, системой привязи астронавтов, двумя окнами переднего обзора, окном над головой для наблюдения за процессом стыковки, телескопом в центре между астронавтами. Для выхода на поверхность Луны производилась полная разгерметизация кабины, так как шлюзовая камера отсутствовала.

Характеристики взлётной ступени:

  • Масса, включая топливо: 4,670 кг
  • Атмосфера кабины: 100 % кислород, давление 33 kPa
  • Вода: два бака по 19.3 кг
  • Охладитель: 11.3 кг раствора этиленгликоль-вода.
  • Температурный контроль: один активный сублиматор «вода-лёд».
  • Двигатели системы ориентации: масса топлива: 287 кг
  • Число и тяга ДСО: 16 x 445 N в четырёх сборках.
  • Топливо ДСО: N 2 O 4 /Aerozine 50
  • Удельный импульс ДСО: 2.84 км/с.
  • Взлётный двигатель, масса топлива: 2,353 кг
  • Взлётный двигатель, тяга: 15.6 kN
  • Взлётный двигатель, топливо: N 2 O 4 /Aerozine 50
  • Взлётный двигатель, система наддува: 2 x 2.9 кг гелиевых бака, давление 21 MPa
  • Удельный импульс: 3.05 км/с
  • Тяговооруженность на взлете: 2.124
  • Характеристическая скорость взлётной ступени: 2,220 м/с.
  • Батареи: две 28-32 volt, 296 ампер-часов, серебряно-цинковые; 56.7 кг каждая.
  • Бортовая сеть: 28 V DC, 115 V 400 Hz AC

Кабина лунного модуля. Непосредственно под рабочим местом пилота- люк для выхода на поверхность Луны.

Посадочная ступень

Посадочная ступень лунного модуля в виде крестообразной рамы из алюминиевого сплава несёт на себе в центральном отсеке двигательную установку с посадочным ЖРД фирмы STL.

В четырёх отсеках, образованных рамой вокруг центрального отсека, установлены топливные баки, кислородный бак, бак с водой, гелиевый бак, электронное оборудование, подсистема навигации и управления, посадочный радиолокатор и аккумуляторы.

Четырёхногое убирающееся шасси, установленное на посадочной ступени, поглощает энергию удара при посадке корабля на поверхность Луны разрушающимися сотовыми патронами, установленными в телескопических стойках ног шасси; дополнительно удар смягчается деформацией сотовых вкладышей в центрах посадочных пят. Три из четырех пят снабжены гибким металлическим щупом, направленным вниз и раскрывающимся наподобие рулетки, сигнализирующим экипажу момент выключения ЖРД при контакте с лунной поверхностью. Шасси находятся в сложенном состоянии до отделения лунного корабля от командного отсека; после отделения по команде экипажа лунного корабля пиропатроны перерезают чеки у каждой ноги и под действием пружин шасси выпускается и становится на замки. Так же как взлётная ступень, посадочная ступень окружена тепловым и микрометеорным защитным экраном из многослойного майлара и алюминия. Высота посадочной ступени 3,22 м, диаметр 4,3 м.

Характеристики посадочной ступени
  • Масса, включая топливо: 10334 кг
  • Запас воды: 1 бак, 151 кг
  • Масса топлива и окислителя: 8165 кг
  • Тяга двигателя: 45,04 kN, дросселирование 10 % — 60 % от полной тяги.
  • Компоненты топлива: N 2 O 4 /Aerozine 50
  • Бак наддува: 1 x 22 кг бак, газ наддува-гелий, давление 10,72 kPa.
  • Удельный импульс: 3,05 км/с.
  • Характеристическая скорость взлётной ступени: 2470 м/с.
  • Батареи: 4 или 5 28-32V, 415 A-h, серебряно-цинковые, масса каждой 61,2 кг.

Профиль посадки на Луну

Переход двух астронавтов в лунный модуль производился после того, как комплекс «Аполлон» выходил на целевую орбиту Луны. Пилот отводил лунный модуль на небольшое расстояние от командного отсека и разворачивал его с тем, чтобы пилот командного отсека мог визуально осмотреть состояние посадочного шасси. Затем, после отхода на безопасное расстояние от командного отсека, производилось включение главного двигателя лунного модуля на торможение. Данный маневр снижал перилуний орбиты лунного модуля до 15 км над лунной поверхностью: в этой точке корабль находился на расстоянии порядка 480 км от намеченного места посадки.

По достижении данной точки производилось второе, основное включение двигателя на торможение с целью снизить вертикальную и горизонтальную скорость лунного модуля до посадочных значений. Данная стадия полета проходила под управлением бортового компьютера, получающего данные от посадочного радара. Управление кораблем производилось дросселированием тяги двигателя посадочной ступени и работой двигателей системы ориентации. После снижения до высоты порядка 210 метров и на удалении около 600 м от точки посадки лунная кабина разворачивалась в вертикальное положение и по курсу: именно в этот момент астронавты получали возможность видеть лунную поверхность через треугольные окна переднего обзора и, таким образом, перейти к заключительной части процедуры посадки.

Посадка происходила в полуавтоматическом режиме. Командир лунного модуля выполнял визуальный подбор посадочной площадки и при необходимости уводил корабль от непригодных для посадки участков. Время, отведенное на выполнение этого маневра, было ограничено запасом топлива и составляло около двух минут. Тягу посадочного двигателя регулировала автоматика. Момент посадки определялся уходом выбранного участка поверхности из поля зрения при движении по направлению к этому участку: с этой целью пилот выбирал подходящий заметный ориентир. В момент, когда ориентир уходил под корабль, производилась посадка. Пилот отслеживал вертикальную и поступательную скорость модуля, приводя ее к околонулевой. В момент касания грунта щупами посадочных опор вспыхивала сигнальная лампа «контакт»: по данному сигналу пилот выключал посадочный двигатель и выполнялась собственно посадка.

Лунные модули для последних трёх экспедиций программы «Аполлон» были значительно модернизированы в сторону увеличения полезной нагрузки и времени автономного существования. Посадочный двигатель был оснащён дополнительным сопловым насадком длиной 254 мм, увеличен объем баков топливных компонентов. Время зависания над лунным грунтом и посадочный вес были также увеличены путем некоторого пересмотра программы посадки: первоначальный тормозной импульс на сход с орбиты Луны производился ещё до отделения лунного модуля от командно-сервисного модуля, двигателем последнего. Эти меры позволили доставлять на Луну колёсный транспортёр LRV и увеличили возможное время пребывания на поверхности Луны до трёх суток.

(или лунный корабль , или лунный отсек , англ. Lunar Module , LM ; раннее название англ. LEM Lunar Excursion Module ) — составная часть корабля «Аполлон», предназначена для доставки двух астронавтов на поверхность Луны с лунной орбиты и их возвращения на лунную орбиту с последующей стыковкой с орбитальным кораблем . Фактически представлял собой отдельный двухместный двухступенчатый корабль.

Во время старта к Луне с помощью ракеты «Сатурн-5 » лунный модуль находился внутри адаптера , на пути к Луне производилась перестыковка: орбитальный корабль отделялся от адаптера, стыковался с лунным модулем и извлекал его из адаптера, после чего связка продолжала полет к Луне в состыкованном состоянии. На окололунной орбите модуль с двумя астронавтами (находившимися внутри взлетной ступени) отстыковывался, производил посадку на поверхность с помощью двигателя посадочной ступени. По окончании работы на поверхности астронавты возвращались во взлетную ступень, которая, оставив посадочную ступень на Луне, стартовала на окололунную орбиту. При этом посадочная ступень использовалась в качестве стартового стола. На орбите взлетная ступень стыковалась с орбитальным кораблем, и астронавты возвращались в командный модуль . Перед отлетом к Земле взлетная ступень снова отстыковывалась и в дальнейшем падала на Луну.

Темы, связанные с лунным модулем

Основные данные

Производитель: Grumman Aircraft Engineering
Высота: 6,37 м
Диаметр: 4,27 м
Ширина по диагональным стойкам шасси: 9,07 м
Полная масса: до 16,5 тонн (в последних экспедициях «Аполлон-15 , -16 , -17 »; в первых от 14,0 тонн — «Аполлон-12 »)
Масса посадочной ступени: около 11,7 тонн
Масса взлетной ступени: около 4,5 тонн
Двигатели:
Посадочная ступень: тяга 476 кгс — 4760 кгс, удельный импульс около 300 с
Взлетная ступень: тяга 1590 кгс, удельный импульс ок. 300 с
Система управления : 16 двигателей (в 4 блоках), тяга по 45,5 кгс, удельный импульс около 240 с
Топливо: горючее — аэрозин-50 (смесь 50/50 гидразина и несимметричного диметилгидразина), окислитель — четырехокись азота (N 2 O 4)
$\Delta V$ : 4700 м/с
Экипаж: 2 человека
Жилой объем: 6,6 куб. м
Атмосфера: чистый кислород, давление 1/3 атм.
Время автономной работы: до 72 часов (в последних экспедициях)

Конструкция

Лунный модуль состоит из двух ступеней: посадочной и взлетной . Жилой является только взлетная ступень, она также содержит все системы управления и большую часть других систем. Посадочная ступень служит для торможения корабля при сходе с окололунной орбиты, для обеспечения его посадки, а также содержит научные приборы и другое оборудование, основная часть которого остается на Луне после отлета экипажа.

Посадочная ступень

Посадочная ступень представляет собой негерметичную восьмиугольную раму (высота 3,2 м, диаметр 4,3 м), снабженную складывающимся четырехногим шасси для мягкой посадки на поверхность. В центре посадочной ступени находится двигатель с регулируемой тягой (в диапазоне 10 % — 100 %). В боковых отсеках расположены баки с топливом, посадочный радар, электробатареи, баки с водой, гелием для наддува и кислородом. Там же находятся отсеки с научным оборудованием и приборами (в последних трех экспедициях также лунный ровер в сложенном виде). Ступень окружена тепловым и микрометеорным защитным экраном из многослойного майлара и алюминия.

Взлетная ступень

Взлетная ступень состоит из 3 основных отсеков: герметичные отсек экипажа и центральный отсек, а также негерметичный задний отсек оборудования. Высота взлетной ступени 3,4 м, диаметр 4,3 м. На боковой поверхности на выносных фермах находятся 4 блока двигателей реактивной системы управления по 4 двигателя в каждом блоке. Сверху располагаются антенны системы связи (S-диапазон и УКВ). Снаружи ступень покрыта тепловым и микрометеорным экранами. Отсек экипажа представляет собой лежащий на боку цилиндр диаметром 2,35 м и длиной 1,07 м (объем 4,6 м 3). Отдельно располагаются баки с топливом и окислителем, с баллоны с газом наддува (гелий), баки с жидким кислородом, емкости с водой и другое оборудование.

Два рабочих места для астронавтов снабжены пультами управления и приборными досками. Кресел нет, вместо них имеется система привязи астронавтов. Перед каждым астронавтом располагается треугольное окно переднего обзора. В крыше имеется прямоугольное окно для наблюдения за процессом стыковки и телескопом для ориентирования по звездам. В передней стенке отсека экипажа имеется квадратный люк, открывающийся внутрь, размером 0,81 м х 0,81 м. В нижней части ступени расположен взлетный ЖРД. В верхней части располагается туннельное кольцо, которое соединяется со стыковочным кольцом командного отсека. Ступень окружена тепловым и микрометеорным защитным экраном из многослойного майлара, покрытого снаружи одним тонким слоем алюминия.

Взлетная ступень прикреплена в четырех точках к посадочной ступени с помощью пирозамков, разрывающихся при разделении ступеней. Имеется также канал, через которые проходят электрические и другие коммуникации, связывающие ступени.

Схема

1 Люк стыковочного узла отсека экипажа и лунной кабины.
2 Люк для входа в герметизированную кабину.
3 Две антенны метрового диапазона.
4 Бак окислителя для двигателей системы ориентации (N 2 O 4).
5 Блок автоматики.
6 Бачок с водой.
7 Баллон с гелием для вытеснительной системы подачи топлива в двигатели системы ориентации.
8 Бак горючего для двигателей системы ориентации.
9 Бак горючего для основного двигателя взлетной ступени.
10 Блок двигателей системы ориентации.
11 Радиоизотопная энергетическая установка.
12 Телескопическая стойка посадочного шасси.
13 Тарельчатая опора посадочного шасси.
14 Поперечный элемент шасси.
15 Бак горючего основного двигателя посадочной ступени (2 шт.).
16 Двигатель посадочной ступени с регулируемой тягой.
17 Бак с окислителем двигателя посадочной ступени (2 шт.).
18 Выдвижная антенна диапазона S (используется на поверхности Луны).
19 Посадочная ступень.
20 Лестница для спуска астронавтов на поверхность Луны.
21 Теплоизоляция.
22 Площадка с поручнями.
23 Основной двигатель взлетной ступени.
24 Автономная ранцевая система жизнеобеспечения.
25 Дефлекторы для отклонения истекающих газов из сопла.
26 Вентилятор для обеспечения циркуляции кислорода в кабине.
27 Проблесковый источник света.
28 Пульт управления лунной кабиной.
29 Антенна диапазона S, используемая во время полета.
30 Антенна радиолокатора, обеспечивающего встречу на орбите.
31 Поворотная антенна диапазона S.

История

Необходимость в отдельном корабле для посадки на Луну возникла после того, как было принято решение об однопусковой схеме полета со встречей на лунной орбите . Первоначальное название лунного модуля (англ. Lunar Module, LM ) было «лунный экскурсионный модуль», (англ. Lunar Excursion Module, LEM ), нынешнее название появилось позже. Тем не менее, аббревиатура «LEM » до сих пор встречается в литературе.

Лунный модуль был разработан и сконструирован фирмой «Грумман» (Grumman Aircraft Engineering ), которая получила контракт на разработку в сентябре 1962 года. Субподрядчиками выступили Bell Aerosystems (двигатель взлетной ступени), Hamilton Standard (системы жизнеобеспечения и контроля внутренней), Marquardt (двигатели системы управления) и «Рокетдайн» (Rocketdyne ) (двигатель посадочной ступени). Параллельно в 1963 году двигатель посадочной ступени был заказан у Space Technology Laboratories , в 1965 году контракт с «Рокетдайном» был расторгнут. Система управления, навигации и контроля разрабатывалась Инструментальной лабораторией Мичиганского технического университета, компьютер был изготовлен фирмой Raytheon . Резервная навигационная система разрабатывалась в TRW .

В первоначальных проектах конструкции присутствовали большие окна и сиденья для астронавтов. Современный вид модуль приобрел в начале 1963 года, когда были определены конструкции взлетного и посадочного двигателя. Впоследствии для уменьшения массы и повышения безопасности конструкция несколько раз пересматривалась. Сиденья были удалены, окна были уменьшены, конструкция облегчена. Первоначально предполагалось, что источником электропитания будут топливные элементы разработки Pratt and Whitney , однако в начале 1965 года они были заменены батареями. Также первоначальные варианты шасси предполагали три ноги; впоследствии их число увеличили до пяти (чтобы повысить устойчивость в случае повреждения одной из ног), однако ради уменьшения веса число ног в окончательном варианте свелось к четырем.

Чтобы обучиться летать и совершать посадку на лунном модуле, астронавты упражнялись на специально построенных для этого аппаратах вертикального взлета и посадки , система управления которых была подобна системе управления модуля. В исследовательском центре Лэнгли был сооружен портальный кран высотой около 60 метров и длиной около 120 метров. Испытательный аппарат подвешивался под этим краном и мог управляться посредством движения крана.

После беспилотных и пилотируемых испытаний (см. следующий раздел) лунный модуль совершил первую посадку на Луну в полете «Аполлона-11 », астронавты выполнили один краткосрочный выход на поверхность. «Аполлон-12 » и «Аполлон-14 » совершили точную посадку с помощью усовершенствованных компьютеров и улучшенной техники управления. В апреле 1970 года лунный модуль сыграл роль «спасательной шлюпки» для астронавтов «Аполлона-13 », когда на пути к Луне произошел взрыв кислородного бачка в служебном модуле . Астронавты воспользовались системой жизнеобеспечения и энергетическими ресурсами лунного модуля, а также корректировали траекторию с помощью двигателя посадочной ступени. В экспедициях «Аполлона-15 , -16 , -17 » лунный модуль был значительно доработан, чтобы обеспечить работу астронавтов на поверхности Луны в течение трех суток с тремя выходами на поверхность. Сопло посадочного двигателя было снабжено 254-миллиметровым насадком для увеличения удельного импульса, возрос объем баков посадочной ступени, время маневрирования также возросло за счет изменения схемы посадки. Научного оборудования стало больше. Был добавлен электрический автомобиль («ровер »), который находился в сложенном состоянии в грузовом отсеке посадочной ступени; после посадки астронавты извлекали его и раскладывали.

Испытания

«Аполлон-5»

Первым беспилотным испытанием лунного модуля был полет «Аполлон-5» 22 января 1968 года.

«Аполлон-9»

Первым пилотируемым испытанием лунного модуля был полет «Аполлон-9 » 3 марта 1969 года. Корабль «Аполлон-9», включавший в себя орбитальный корабль Сатурн-5 ». Программа полета предусматривала испытания всех систем лунного модуля на околоземной орбите, маневрирование и перестроение орбитального корабля и лунного модуля, отработку навигации и управления при встрече и стыковке лунного модуля с орбитальным кораблем.

После старта на втором витке было произведено перестроение кораблей: орбитальный корабль отделился от адаптера и пристыковался к лунному модулю, а затем извлек его из адаптера. 4 марта с помощью колебаний (специально возбуждаемых двигателем орбитального корабля) была проверена прочность стыковочного узла. Было выпущено посадочное шасси лунного модуля. Затем примерно на 6 минут был включен двигатель посадочной ступени, в результате чего лунный модуль получил приращение скорости около 0,5 км/с. Переход астронавта из лунного модуля в орбитальный корабль через открытый космос (для проверки возможности аварийного возвращения в орбитальный корабль после взлета с Луны, если не удастся состыковать лунный корабль и основной блок или если после стыковки не удастся открыть внутренний люк в туннеле перехода) был заменен на выход в открытый космос через люк лунного модуля.

7 марта было осуществлено отделение лунного модуля от орбитального корабля, модуль с двумя астронавтами осуществил самостоятельный полет, была сброшена посадочная ступень, а взлетная ступень, управляемая астронавтами, осуществила встречу и стыковку с орбитальным кораблем. Лунный модуль находился в самостоятельном полете около 6,5 часов. В ходе эксперимента несколько раз включались двигатели посадочной и взлетной ступени. После стыковки взлетная ступень была отделена от орбитального корабля. Орбитальный корабль был отведен примерно на 1 километр, после чего по команде с Земли был включен двигатель взлетной ступени примерно на 6 минут до полного израсходования топлива для имитации взлета с Луны; приращение скорости взлетной ступени составило около 2,3 км/с.

По программе командный модуль должен был произвести посадку в Атлантическом океане на 370 км юго-западнее Бермудских островов, но вследствие неблагоприятной погоды место посадки было перенесено на несколько сот километров.

Полет «Аполлона-9» длился около 10 дней.

«Аполлон-10»

Первым полетом к Луне и лунного модуля был полет «Аполлона-10» 18 мая 1969 года; это было последнее испытание модуля перед посадкой. Корабль «Аполлон», включавший в себя орбитальный корабль и лунный модуль, был запущен на околоземную орбиту ракетой «Сатурн-5 ». Программа полета предусматривала испытания всех этапов экспедиции с высадкой на Луну, за исключением этапа торможения и посадки на Луну и взлета с Луны. Программа испытаний модуля включала в себя проведение всех маневров на орбите спутника Луны с проведением всех маневров, необходимых для посадки на Луну и снижения до высоты 15 км над поверхностью Луны, проверку управления лунным кораблем основной и аварийной системами навигации и управления; испытания радиолокатора встречи на орбите на дальности около 600 км; испытания посадочного радиолокатора в течение 800 сек, модуль дважды проходил над будущим местом посадки «Аполлона-11 »; осмотр и фотографирование места будущей посадки «Аполлона-11», изучение ориентиров на подходе к месту посадки.

Через 3 дня после старта на ракете «Сатурн-5 » орбитальный корабль с пристыкованным лунным модулем вышли (с помощью двигателя орбитального корабля) на окололунную орбиту с параметрами примерно 310 км х 110 км. После двух витков орбита была скруглена, итоговая высота составила около 110 км. 22 мая лунный модуль отстыковался от орбитального корабля и начал самостоятельное маневрирование. Астронавты включили двигатель посадочной ступени и перевели модуль на эллиптическую траекторию снижения 113 км х 14 км. Вблизи периселения были проведены испытания посадочного радиолокатора, а также наблюдения места будущей посадки «Аполлона-11». Из-за гравитационных аномалий поля Луны лунный модуль не прошел точно над местом посадки, как планировалось, а отклонился к югу на несколько километров.

После прохождения периселения двигатель посадочной ступени перевел модуль на фазирующую орбиту 360 км х 22 км. Когда модуль вторично проходил над местом посадки «Аполлона-11», то он оказался позади орбитального корабля в положении, соответствующем имитации взлета с поверхности Луны после посадки. На высоте 22 км над местом посадки «Аполлона-11» была сброшена посадочная ступень, а взлетная ступень была уведена на безопасное расстояние. Внезапно ступень начало бросать в разные стороны, поворачивать по крену и тангажу. Командир лунного модуля Стаффорд выключил автопилот и с помощью ручного управления стабилизировал взлетную ступень. Наиболее вероятной причиной произошедшего было ошибочное положение тумблера управления.

После стабилизации взлетной ступени начались операции по сближению и встрече с орбитальным кораблем. После нескольких маневров взлетная ступень перешла на концентрическую орбиту с постоянной разностью высот 28 км ниже орбиты корабля. Затем было произведено сближение кораблей. Через 8 часов после начала самостоятельных маневров взлетная ступень состыковалась с орбитальным кораблем. После возвращения астронавтов из взлетной ступени в командный модуль взлетная ступень была отстыкована от корабля. По команде с Земли был включен двигатель взлетной ступени до полного израсходования топлива, чтобы перевести ее на гелиоцентрическую орбиту. Еще через сутки орбитальный корабль стартовал к Земле. Посадка произошла 26 мая в Тихом океане вблизи авианосца «Принстон».

В полете успешно прошли испытания всех систем лунного модуля — двигательных установок, посадочной и взлетной ступеней, основной и аварийной системы навигации и управления и радиооборудования, астронавты приобрели опыт навигации и управления модулем на лунной орбите.

Полет «Аполлона-10» длился около 8 дней.

Экземпляры

Номер Название Использование Дата пуска Текущее местонахождение
LM-1 «Аполлон-5 » 22 января 1968 года сгорел в атмосфере
LM-2 не летал экспонируется в Национальном музее авиации и космонавтики, Вашингтон
LM-3 Spider («Паук») «Аполлон-9 » 3 марта 1969 года сгорел в атмосфере
LM-4 Snoopy («Любопытный») «Аполлон-10 » 18 мая 1969 года посадочная ступень упала на Луну, взлетная, после неудачной попытки перевести на гелиоцентрическую орбиту, оставлена на окололунной орбите и упала на Луну
LM-5 Eagle («Орел») «Аполлон-11 » 16 июля 1969 года
LM-6 Intrepid («Неустрашимый») «Аполлон-12 » 14 ноября 1969 года
LM-7 Aquarius («Водолей») «Аполлон-13 » 11 апреля 1970 года сгорел в атмосфере
LM-8 Antares («Антарес») «Аполлон-14 » 31 января 1971 года посадочная ступень на Луне, взлетная упала на Луну по команде в определенном месте
LM-9 не летал экспонируется в Космическом центре им. Кеннеди, мыс Канаверал
LM-10 Falcon («Сокол») «Аполлон-15 » 26 июля 1971 года посадочная ступень на Луне, взлетная упала на Луну по команде в определенном месте
LM-11 Orion («Орион») «Аполлон-16 » 16 апреля 1972 года посадочная ступень на Луне, взлетная оставлена на окололунной орбите и упала на Луну
LM-12 Challenger («Вызывающий») «Аполлон-17 » 7 декабря 1972 года посадочная ступень на Луне, взлетная упала на Луну по команде в определенном месте
LM-13 не достроен; восстановлен и экспонируется в музее «Колыбель авиации», Нью-Йорк
LM-14 не летал (экспедиция отменена) не достроен; возможно, детали включены в экземпляр модуля, экспонируемого в музее им. Франклина, Филадельфия
LM-15 не летал (экспедиция отменена) уничтожен

Каждый раз читая российские форумы в которых затрагивается тема полётов человека на Луну, я наталкиваюсь на абсолютное невежество среди форумчан (в т. ч. и среди технически образованных людей). В рунете распространено мнение, что лунный модуль, спроектированный и построенный фирмой Grumman Aerospace Corporation для высадки человека на поверхность Луны в рамках программы «Аполлон», сделан чуть-ли не из фольги. Мол толщина стенок его кабины настолько тонкая (наиболее часто говорят о трёх слоях фольги), что её можно пробить ногой, а прочность конструкции обеспечивается внутренним давлением. Это заблуждение среди отечественных читателей тянется с 1976 года, и базируется на неверной интерпретации фразы астронавта Джеймса Макдивитта (James Alton McDivitt), произнесённой им на одной из пресс-конференций перед полётом космического корабля «Аполлон-9». Изначально она была неверно интерпретирована советским писателем-фантастом и журналистом Владимиром Степановичем Губаревым, который написал популярную в СССР книгу «Космические мосты» (издана в 1976 году в Москве издательством «Молодая Гвардия»). Владимир Губарев пишет (цитата из книги):
«Р. Швейкарт должен быть очень осторожен. Одно неверное движение, и он повредит лунную кабину. Стенки её настолько тонки и непрочны, что человек может пробить их ногой, - заявил перед стартом Д. Макдивитт. - На Земле стенки лунной кабины во многих местах может повредить даже случайно уронённая отвёртка...»

Другой журналист, не менее популярный популяризатор космонавтики, коллега Губарева - Ярослав Кириллович Голованов пишет в известной книге «Правда о программе «APOLLO» (практически копирует текст своего коллеги, добавляя при этом своё мнение, которое является по-сути мнением дилетанта):
«- Швейкарт должен быть очень осторожен, - предупреждал Макдивитт. - Одно неверное движение, и он повредит лунный модуль. Стенки его настолько тонки и непрочны, что человек может пробить их ногой. На Земле стенки лунного отсека может повредить даже случайно оброненная отвёртка…
Я две недели рассматривал лунную кабину, которая стояла в зале, где разместилась пресса во время полета «Союза-19» и «Аполлона» в Хьюстоне. «Паучок» сделан из металлической фольги. Не из такой, конечно, в которую заворачивают шоколадные конфеты, но все-таки, если выбирать из двух определений: металлический лист или металлическая фольга - фольга точнее. В вакууме жесткость этой конструкции увеличивалась за счет внутреннего надува, но все-таки она оставалась весьма субтильной.» ()


Взлётная ступень лунного модуля LM-12 космического корабля «Аполлон-17». Фотография NASA AS17-149-22857

Мнение Ярослава Голованова о конструкции, «сделанной из фольги», и «увеличивающей свою жёсткость в вакууме» выглядит особенно нелепым, если посмотреть фотографии лунного модуля LTA-1, сделанные в Cradle Of Aviation Museum, расположенном в городе Ист-Гарден-Сити на Лонг-Айленде, штат Нью-Йорк:

LTA-1 (Lunar Test Article 1) представляет собой первый экземпляр лунного модуля (прототип), построенный в 1966 году, который конструктивно подобен серийным образцам, предназначенным для полётов в космос. До LTA-1 фирма Grumman Aerospace Corporation строила лишь полномасштабные макеты лунного модуля (т. н. Mock-Up"s: M-1, M-5, TM-1). Конструктивно эти макеты были выполнены из металла и дерева, предназначенные для представления заказчику (NASA), отработки компоновочных решений по размещению различного вспомогательного оборудования и тренировок астронавтов. Но силовая конструкция LTA-1, а также все системы (двигательные установки, их ПГС, электрооборудование и т. д.) были выполнены по рабочим чертежам с соблюдением всех технологических процессов. Данный экземпляр был предназначен для отработки процесса изготовления, сборки и дальнейшей отладки лунного модуля, когда ещё велось проектирование, а также для статических, динамических и электрических испытаний:


Стыковка взлётной и посадочной ступени лунного модуля LTA-1 в комнате для испытаний на кондуктивные электромагнитные помехи на предприятии Grumman Aerospace Corporation, город Бетпейдж, Лонг-Айленд, штат Нью-Йорк. Фотография NASA S67-22164

Основное конструктивное отличие LTA-1 от серийных образцов летавших в космос - передний люк, предназначенный для выхода и входа экипажа из взлётной ступени лунного модуля. На LTA-1 он круглой формы. Начиная с LTA-8 и на всех серийных образцах лунного модуля, по требованию астронавтов, люк был выполнен прямоугольной формы. Проведённые на борту «летающей лаборатории» NASA (переделанный топливозаправщик Boeing KC-135A Stratotanker) эксперименты показали, что в условиях лунной гравитации астронавтам было гораздо удобнее протискиваться в скафандре с ранцевой системой жизнеобеспечения PLSS именно через люк прямоугольной формы). В 1974 году, после завершения программы «Аполлон», LTA-1 был передан на хранение в Национальный музей авиации и космонавтики Смитсоновского института, расположенном в городе Вашингтон (округ Колумбия), а в июне 1998 года передан для реставрации и дальнейшей экспозиции в Cradle Of Aviation Museum, где и находится в настоящее время:

Лунный модуль космического корабля «Аполлон» конструктивно состоит из двух ступеней: посадочной и взлётной. Посадочная ступень оборудована жидкостным ракетным двигателем (ЖРД) для осуществления схода с орбиты искусственного спутника Луны, выполнения захода на посадку и мягкого прилунения. Посадка осуществляется на четырёхножное шасси с тарельчатыми опорами. Перегрузка при прилунении снижается за счёт укорачивания ног шасси, которые представляют собой телескопические штанги. Кинетическая энергия при ударе о лунную поверхность поглощается сминаемым заполнителем сотовой конструкции из алюминиевого сплава. Экипаж, состоящих из двух астронавтов (командир и второй пилот), находится в герметичной кабине взлётной ступени, которая установлена сверху над посадочной. Спуск астронавтов на поверхность Луны осуществляется по лестнице, закреплённой на одной из телескопических ног посадочного шасси, расположенной со стороны переднего люка. Взлётная ступень оборудована ЖРД для взлёта с поверхности (стартовым столом на этом этапе служит посадочная ступень) и выхода на орбиту искусственного спутника Луны. Также взлётная ступень оборудована реактивной системой управления (РСУ). РСУ предназначена для управления не только взлётной ступенью, но и всем лунным модулем (когда он находится в посадочной конфигурации) по шести степеням свободы. ЖРД РСУ могут работать в группе или отдельно - непрерывно или импульсно. Т. к. взлётная ступень вмещала в себя экипаж, то её конструкция представляет наибольший интерес в рамках рассматриваемого массового заблуждения.

Основная конструкция взлётной ступени лунного модуля представляет собой полумонококовую конструкцию, выполненную из хорошо сваривающегося дюралюминиевого сплава 2219 (основной легирующий элемент медь) и высокопрочного деформируемого алюминиевого сплава 7075-T6 (основной легирующий элемент - цинк), имеющие изотропные характеристики. Основная конструкция состоит из трёх главных частей: кабины экипажа, центральной секции и заднего отсека оборудования:

Герметизируются только кабина экипажа и центральная секция. Эти две части представляют собой сварную и кованную конструкцию, сформированную оболочкой цилиндрической формы и подкрепленую прикованными по окружности стрингерами, сформированными из листового дюралюминия, а также поперечными фрезерованными лонжеронами, к которым крепятся элементы конструкции взлётной ступени лунного модуля (балки, соединительные кронштейны и т. д.). В цилиндрической части кабины экипажа над рабочим местом командира сделан проём стыковочного иллюминатора, усиленный по периметру. Передняя часть кабины экипажа образованна плоскими фрезерованными панелями из листового дюралюминия, также подкреплёнными стрингерами и лонжеронами на сгибах. В передней части кабины экипажа находятся два треугольных проёма для иллюминаторов переднего обзора, усиленные по периметру, и между ними, ниже, проём для переднего люка (круглой или прямоугольной формы).
Согласно техническим отчётам по лунному модулю (архивы NTRS), толщина стенок оболочки кабины экипажа и центральной секции взлётной ступени лунного модуля доходит до 0,065 дюймов (1,651 мм). Это значение на порядок превосходит толщину фольги (в большинстве стран общепринятым определением фольги является значение толщины листового металла до 0,2 мм), и толще обшивки сверхзвуковых пассажирских самолётов Ту-144 (1,2 мм) и Concorde (1,5 мм), которые эксплуатировались в более жёстких условиях, чем лунный модуль: аэродинамический нагрев при полётах на больших сверхзвуковых скоростях в стратосфере, циклические напряжения в герметичной конструкции фюзеляжа из-за постоянных перепадов давления, аэродинамические воздействия (изгиб, крутка) и т. д. В процессе эксплуатации самолётов Ту-144 и Concorde случаев «пробивания ногой обшивки» зарегистрировано не было.
В отдельных местах (ненапряжённых), с целью уменьшения веса конструкции, толщина стенок уменьшена методом химического фрезерования до 0,012 дюймов (0,3 мм).
К основной конструкции взлётной ступени лунного модуля крепится двигательная установка, состоящая из жёстко закреплённого в центральной секции взлётного ЖРД Rocketdyne RS-18 (разработанного на основе двигателя Bell 8247), двух топливных баков для него: с левого борта от центральной секции с помощью поддерживающих стержневых балок устанавлен сферический бак горючего («Аэрозин-50»), с правого борта от центральной секции аналогично установлен сферический бак окислителя (четырёхокись азота).
К задней части центральной секции, а также к кабине экипажа через кронштейны крепятся стержневые балки, держащие четыре блока РСУ с шестнадцатью ЖРД Marquardt R-4D (сгруппированы по четыре двигателя). Четыре топливных бака цилиндрической формы с полусферическими днищами расположены симметрично со стороны левого и правого борта центральной секции. Топливные компоненты аналогичны используемым в основной двигательной установке. Между баками с горючим и окислителем для ЖРД РСУ с каждой стороны установлены шарообразные баки с гелием для вытеснительной системы этих двигателей. К верхней части центральной секции крепятся два сферических бака с водой, а также блоки передающих антенн.
Вытеснительный газ (гелий) для основной двигательной установки также хранится в сферических баках. Распожены они в заднем отсеке оборудования вместе с двумя модулями редуцирования давления гелия, управляющим клапаном основной двигательной установки (управляет подачей топливных компонентов, вытесняемых давлением наддува гелием, в камеру сгорания взлётного ЖРД RS-18) и управляющий клапан с перекрёстным управлением для ЖРД РСУ. Также в заднем отсеке оборудования над сферическими баками с гелием расположены два сферических бака с газообразным кислородом для системы жизнеобеспечения экипажа. На специальной выносной панели заднего отсека оборудования крепятся блоки систем радиоэлектронного оборудования лунного модуля отвечающие за радиосвязь, работу бортовых систем (сигнализация, предупреждение) и блоки бортовой цифровой вычислительной машины (БЦВМ), отвечающей за навигацию. Все системы связаны между собой многожильными кабелями и проводами, проходящими по всей поверхности основной конструкции взлётной ступени лунного модуля. Питание электроэнергией осуществляется за счёт двух серебряно-цинковых аккумуляторных батарей.
Чтобы защитить основную конструкцию взлётной ступени лунного модуля и все системы описанные выше от воздействия космического пространства (перепады температуры в вакууме, микрометеориты, воздействие струй ракетных двигателей), применяются термоизоляционное покрытие и микрометеоритная защита, а также специальная термозащитная краска, наносимая на микрометеоритную защиту.
Термоизоляционное покрытие представляет собой многосегментное покрытие из специальных многослойных одеял, каждый сегмент которых натягивается на каркас основной конструкции взлётной ступени. Крепление осуществляется с помощью специальных шпилек*, которые крепятся либо к специальным кронштейнам, либо к силовому набору (к стрингерам и лонжеронам), обеспечивая минимальный зазор 25,4 мм между внутренней стороной одеяла и внешней стороной оболочки кабины экипажа и центральной секции, а также на ферменную конструкцию, окружающую топливные баки главной двигательной установки и задний отсек оборудования. Каждое одеяло состоит из набора следующих слоёв (если считать начиная с внутренней части): один слой алюминизированного каптона (плёнка из полиамида разработки компании DuPont, толщина 0,5 мм), десять слоёв алюминизированного майлара (плёнка на основе синтетического полиэфирного волокна разработки компании DuPont, толщина каждого слоя 0,15 мм), пятнадцать слоёв алюминизированного каптона (толщина каждого слоя 0,5 мм). Количество слоёв одеял термоизоляционного покрытия может варьироваться в зависимости от места нахождения сегмента. В районе воздействия струй ЖРД РСУ сверху вышеперечисленных слоёв накладывается дополнительное термоизоляционное покрытие, состоящее из одного слоя никелевой фольги (толщина 0,5 мм), сетки из инконеля, и инконелевого покрытия толщиной 1,25 мм. Одеяла между собой стыкуются внахлёст и удерживаются с помощью специальных скоб. Стыки заклеиваются липкими лентами:


Схема установки ферменного каркаса внешнего корпуса на основную конструкцию взлётной ступени лунного модуля


Схема установки термоизоляционного покрытия на основную конструкцию взлётной ступени лунного модуля

Микрометеоритная защита представляет собой внешнюю оболочку взлётной ступени лунного модуля и состоит из тонких листов из алюминиевого сплава толщиной до 0,5 мм, устанавливаемая поверх одеял термоизоляционного покрытия:


Схема установки микрометеоритной защиты (внешняя оболочка) на термоизоляционное покрытие взлётной ступени лунного модуля

Её раскрой по секторам идентичен. Крепление осуществляется с помощью тех же специальных шпилек, с помощью которых к основной конструкции взлётной ступени лунного модуля крепится термоизоляционное покрытие. Шпильки над одеялами имеют продолжение, что обеспечивает минимальный зазор 25,4 мм между ними и листами защиты. Стыки между листами заклеиваются липкой лентой.
Во избежание вспучивания термоизоляционного покрытия и микрометеоритной защиты из-за резкого падения окружающего давления во время набора ракетой-носителем высоты, в одеялах и листах проделаны оконтованные вентиляционные отверстия, через которые происходит выравнивание давления.
В районе воздействия струй ЖРД РСУ микрометеоритная защита покрывается специальной термозащитной краской чёрного цвета (ей покрыта большая часть микрометеоритной защиты кабины экипажа).
Если посмотреть на многочисленные фотографии взлётной ступени лунного модуля, то для обывателя создаётся впечатление, что внешняя оболочка из тонких листов алюминия, местами проклеенная липкой лентой, и есть герметичная обочка, которую «легко пробить ногой», т. к. она «сделана из фольги». Это заблуждение было наглядно продемонстрировано Ярославом Головановым в известной для любителей космонавтики книге.

P. S.: Подробный фотоотчёт (Walk Around, 57 фотографий взлётной ступени и 49 фотографий посадочной ступени) по лунному модулю LTA-1 можно посмотреть

Человек на Луне?
Какие доказательства?
Александр Попов

Часть 1
Разбор полётов

К Луне

Раздел 7. А испытан ли лунный модуль?

Впереди – посадка на Луну. Самое время ещё раз вспомнить, а достаточно ли испытан лунный модуль, если иметь в виду этот самый процесс посадки?

Скептик: лунный модуль не испытан

Шесть раз садились на Луну и взлетали с неё лунные модули. По мнению автора , это очень необычный пример многократного, безаварийного функционирования сложнейшей космической системы, которая до этого ни разу не испытывалась в тех реальных условиях, на которые она рассчитана. Вот сокращённый отрывок из его статьи с небольшой корректировкой хронологических неточностей, сделанных по данным :

«Американцы посылают автоматические станции к Луне. Попадают в Луну только с двенадцатого раза в 1962 году («Рейнджер-4»). Советская «Луна-2» попадает в Луну в 1959 году. В 1966-68 г.г. на Луну мягко садятся 5 из 7 посланных аппаратов «Сервейер» (масса – 0,3 т). Пока процесс освоения Луны протекает правдоподобно. Неудачи чередуются с удачами. Ни одна американская автоматическая станция после посадки не взлетает. Это всё, что американцы имели перед прилунением вручную 15-тонного аппарата (лунного модуля) и последующего ручного взлёта. В СССР и Великобритании в это время создаются реактивные самолёты вертикального взлёта и посадки. США такого серийного самолёта не создали до сих пор. Посадка на Луну и взлёт оказались без предыстории и без последствий».

Как видим, мнение очень скептическое. Но есть и другие мнения.

Защитники: имитировался весь процесс высадки

Были тренировки на Земле

Илл.1. Тренировки на Земле

а) начало тренировки на тренажёре лунного модуля,

б) конец тренировки,

в) Армстронг спасается на парашюте

«На Земле летал специально построенный для астронавтов тренажёр (илл.1а). Этих тренажёров было четыре или даже пять. Три из них разбились (илл.1б). Один раз Армстронг был вынужден катапультироваться (илл.1в). Но благодаря многочисленным полётам на этих тренажёрах, а также отработке навыков пилотирования на наземных нелетающих тренажёрах все астронавты уверенно справились с управлением лунным модулем».

Тренировка с драматическим финалом произошла всего за несколько месяцев до того, как Нейл Армстронг посадил лунный модуль «А-11» на Луне. На Земле Армстронга спас парашют. Но на Луне парашют не поможет, да и в любом случае, судьбе астронавта, оказавшегося на Луне у разбитого корабля, не позавидуешь.

Были испытания в космосе

«Лунный модуль на Земле никто не испытывал. Не может он летать при земной силе тяжести – сила тяги его двигателя гораздо меньше его веса, так что он просто не оторвётся от земли. Поэтому его могли испытывать только в космосе. Испытаний перед первой высадкой было целых три. Сперва его опробовали в беспилотном режиме во время полёта «Аполлона-5» в январе 1968 года.…Потом было ещё два пилотируемых испытания – на околоземной орбите во время полёта «Аполлона-9» и на окололунной – при полёте «Аполлона-10"», – так пишет автор . Его мнение разделяет и автор : «Во время этих испытаний имитировался весь процесс высадки на Луну…»

Посмотрим, в чём состояли эти испытания, если принять на веру то, что сообщает о них НАСА. (В том числе и сам факт полёта А-10 к Луне, по поводу которого у автора возникли сомнения после знакомства с материалами полёта А-8).

Беспилотные испытания лунного модуля (А-5) дали не очень оптимистический результат:

«Когда же 22 января 1968 года лунный модуль стартовал на ракете «Сатурн-1» и начались его испытания на орбите, возникли новые осложнения: двигатели мягкой посадки на Луну проработали лишь 4 секунды из положенных 39. Повторные включения ничего не дали» .

Испытательный полёт лунного модуля А-9 проходил на околоземной орбите уже с участием экипажа . «Вскоре после старта и выхода на околоземную орбиту астронавты должны были совершить с модулем довольно сложные эволюции … Макдивитт и Швейкарт пересели в лунную шлюпку и отчалили от корабля. Во время этих испытаний имитировался весь процесс высадки на Луну : сначала спускались, а потом, отбросив посадочную ступень, полетели «домой» к «Аполлону». Максимальное удаление модулей друг от друга превышало 175 км» .

Испытательный полёт лунного модуля А-10 , по выражению автора , в отношении испытаний лунного модуля представлял «одно и то же» по сравнению с программой А-9, но происходил он на окололунной орбите.

Итак, «сначала спускались, а потом полетели «домой». И это называется «имитировался весь процесс высадки на Луну». Представьте себе, что к аэродрому приближается самолёт. Он сначала снижается, даже выпускает шасси, но затем разворачивается и улетает «домой». И где в этих действиях «высадка», то есть, в данном примере, посадка на посадочную полосу? И где взлёт с этой полосы?

Не испытан по главному назначению

Таким образом, лунный модуль не испытывался по своему главному предназначению – посадке на Луну и взлёту с неё .

Посадка – один из самых опасных этапов космического полёта . Почему же НАСА рискнула отправить на Луну астронавтов, не испытав лунный модуль в автоматическом режиме по его главному назначению? Ведь в том, что касается других новых космических кораблей, НАСА проявляла самый осторожный подход. Например, опытный образец космического многоразового челнока, предназначавшийся для отработки спуска в атмосфере и планирующей посадки, сбрасывался со специально переоборудованного самолёта-носителя «Боинг-747» 17 (семнадцать!) раз . И это не помешало челноку «Колумбия» потерпеть в феврале 2003 года катастрофу именно в тот момент, когда корабль шёл на посадку.

К лунному модулю положение об опасности посадки относится в не меньшей степени. Напомним, что, как отмечалось в начале раздела, незадолго до начала полётов «лунных» «Аполлонов» разбились при посадке на Луну два из семи аппаратов мягкой посадки типа «Сервейер». А «Сервейер» – это аппарат в 50 раз более лёгкий, чем лунный модуль и несравненно менее сложный. Не говоря уже о том, что «Сервейерам» не надо было взлетать.

Поскольку лунный модуль нельзя было испытать на посадку в земных условиях, то оставалась единственная возможность испытать его – совершить посадку и последующий взлёт с Луны в автоматическом режиме.

Сажать людей в аппарат, минуя такие автоматические испытания, значит, подвергать их жизнь неоправданному риску. Парашют над Нейлом (илл.1б) напоминает, как сложно и опасно управлять даже упрощённым аппаратом, отдалённо напоминающим лунный модуль (три из пяти разбились). Но никаких беспилотных испытаний лунного модуля на посадку и, тем более, взлёт с Луны, НАСА не проводила.

«Мы не должны никогда забывать, что это крайне рискованное задание» – говорил тогдашний директор НАСА Томас Пейн о полётах на Луну . И, тем не менее, руководимая тем же Пейном НАСА, поручает астронавтам “прилуниться” в неиспытанных по основному назначению модулях. И астронавты, только что разбившие несколько примитивных имитаторов лунных модулей, соглашаются, и шесть раз подряд демонстрируют на Луне искусство безаварийного взлёта и посадки.

Есть одно возможное объяснение и «лёгкомысленного» подхода НАСА к испытаниям лунного модуля, и чрезвычайной смелости астронавтов, выразивших готовность садиться на Луну в неиспытанном модуле при наличии «за плечами» разбитых летательных тренажёров. Всё это становится понятным, если на самом деле, во время полётов «лунных» «Аполлонов» никакие модули на Луну не летали. Челнокам предстояло взлетать и приземляться, и их испытывали на посадку 17 раз. А лунному модулю не суждено было сесть на Луну, так зачем ему настоящие испытания? Достаточно в глазах общественности «имитировать весь процесс высадки на Луну». И астронавтам смелыми легко казаться, когда знаешь, что полёт начнётся выходом на околоземную орбиту, а закончится спуском с неё. Тогда рискуешь не более чем другие околоземные астронавты.

Впрочем, всё это догадки, предположения и сомнения. Но поскольку эти сомнения не беспочвенны, то они побуждают внимательнее познакомиться с теми материалами, которые представила НАСА в подтверждение своих рассказов об испытаниях лунного модуля. Рассмотрим для примера киноэпизод, снятый, согласно НАСА, астронавтами А-9 во время их полёта по околоземной орбите. Именно в этом полёте, по данным НАСА, были проведены первые пилотируемые испытания лунного модуля.

Сомнительные кадры из хроники испытательного полёта «Аполлона-9»

Илл.2. Корабль А-9 с пристыкованным лунным модулем, из люка высунулся астронавт Д. Скотт; на вставке: астронавт Р. Швейкарт в открытом космосе, стоит на подножке лунного модуля

На илл.2 показан монтаж автора из двух снимков НАСА . На главном плане – корабль А-9 с пристыкованным лунным модулем (прямоугольная конструкция на переднем плане). Из люка высунулся астронавт Д. Скотт. В это время другой астронавт, Р. Швейкарт тоже вышел в открытый космос и разместился на площадке лунного модуля (вставка). «Скотт, высунувшись из люка, снимал Швейкарта, который … тоже вёл киносъёмку» .

Очень красивые кадры, а теперь посмотрим киноэпизод, который согласно описанному сюжету снял астронавт Швейкарт ([ф2 ], [ив12 ]).

Кружат ли в космосе воздушные вихри?

Илл.3. Кадр из киноэпизода: астронавт Д. Скотт высовывается в открытый космос

Вот астронавт Скотт (илл.3), высунувшись из люка, совершает какие-то действия. Нас в этом эпизоде интересует белый лоскуток какой-то ткани или фольги, который виден недалеко от руки астронавта. Проследим за его движением по кадрам, представленным на илл.4.

Момент, соответствующий кадру 4а принят за начало отсчёта времени. На кадре 4д в поле зрения попадает другой лоскут. Он зачёркнут красной линией, чтобы на него не отвлекалось внимание. В безвоздушном космическом пространстве ничто не мешает предметам двигаться по инерции и поэтому любой выброшенный из корабля предмет удаляется от него по прямой линии. Но выброшенный лоскут движется явно по непрямой, ломаной линии 1-2-3-4-5. Всё происходит так, как будто этот лоскут кружится в вихре воздуха. И вихрь этот достаточно энергичен: лоскут проделал свой извилистый путь за 0,36 с. Невооружённый глаз не успевает «схватить и понять», что происходит. Не поэтому ли режиссёры этого эпизода спокойно выпустили его на экран?

Илл.4. Выброшенный из кабины лоскут движется зигзагом

Вот ещё одна серия кадров на эту тему (илл.5). Здесь другой лоскут всего за 0,5 секунды описывает почти замкнутую траекторию. Что его кружит, если не воздушный вихрь?

Илл.5 . Этот лоскут движется по замкнутой траектории

Наконец, серия кадров (илл.6) показывает возвращение выброшенного лоскута. Сначала он удаляется от корабля (илл.6а, б), а затем и вовсе исчезает за кромкой крышки люка (илл.6в).

Илл.6. Лоскут возвращается из «космоса» в кабину корабля

Проходит 3 секунды, и лоскут появляется вновь из-за крышки люка (илл.6 г, д). Он отскакивает от шлема астронавта (илл.6е) и исчезает из кадра. А что заставило его вернуться, если не движение воздуха?

Строго говоря, лоскуты на кадрах 6а,б и 6 г,д,е могут быть и разными: то есть, улетел один лоскут, а прилетел другой. Но это не снимает вопрос, потому что в космосе все выброшенные из корабля предметы только удаляются от него, здесь жёстко действует правило: «что с воза упало, то пропало».

Весь киноэпизод с высовыванием астронавта Скотта из люка длится 40 секунд, а лоскуты он начинает вышвыривать на 25-ой секунде. Значит, всё это время вокруг корабля кружат таинственные вихри. Неужели вокруг этого корабля – не космос?

Способна ли НАСА на подделку выхода в открытый космос?

После того, что мы только что увидели, возникает вопрос, неужели НАСА способна на подделку эпизода выхода в открытый космос? И очень похоже на то, что ответ здесь будет утвердительным.

Тем более что, как оказывается, НАСА практиковала такие приёмы и раньше, ещё при освещении полётов кораблей «Джемини».

Илл.7.

а) Р. Рене рассказывает о книге астронавта Майкла Коллинза «Неся огонь»

Ниже – так выглядят иллюстрации из книги, после процедуры сопоставления, выполненной Р. Рене:

б) астронавт М. Коллинз в самолёте во время тренировки в условиях невесомости

в) астронавт М. Коллинз «выходит в открытый космос» из корабля «Джемини-10»

Вот что рассказывает об одном из таких «выходов» Р. Рене, автор книги «НАСА прилунила Америку» (илл.7 и [ф1 ], [ив13 ]):

«Когда я начинал своё расследование, мне попалась книга астронавта Коллинза (илл.7а). В ней была фотография его тренировки в самолёте в условиях невесомости (илл.7б) и фотография выхода в открытый космос во время полёта космического корабля «Джемини-10» (илл.7в). Я внимательно рассмотрел обе эти фотографии и, хотя они отличаются по размерам и имеют зеркальное изображение, мне показалось, что здесь что-то не так. Я отправился в профессиональную фотостудию и попросил, чтобы они перевернули фото из тренировочного самолёта, а вторую фотографию увеличили так, чтобы оба снимка были одинакового размера. Это было сделано и оказалось, что обе фотографии полностью идентичны вплоть до внутренней части самолёта. То есть обе фотографии сделаны в одном и том же месте, а, именно, в самолёте. Коллинз парил не в открытом космосе. Кому нужна эта ложь?» .

Итак, Р. Рене пришёл к выводу, что данный выход в открытый космос – подделка. Кому же она нужна, спрашивает Р. Рене. Вот здесь можно с достаточной долей уверенности ответить: в напряжённых условиях лунной гонки такая подделка (разумеется, нераскрытая) могла принести существенный психологический выигрыш НАСА.

В наше время выходы астронавтов в открытый космос стали привычным делом. А в начале эры пилотируемых полётов каждый такой выход был событием. И дело тут не только в необычности и опасности самого выхода в космос. Способность к осуществлению таких выходов могла оказаться очень полезной при возникновении нештатных ситуаций во время полёта и при проведении сложных работ, в которых без таких выходов трудно обойтись. Поэтому количество выполненных выходов в космос служило важным показателем при оценке уровня космонавтики. Вскоре после полёта А-8, размышляя о состоянии советской космической программы, Н. П. Каманин на основании данных, опубликованных НАСА, с беспокойством пишет о том, что американцы в рамках программы «Джемини» обогнали СССР по числу выходов в открытый космос. Руководитель советских космонавтов, приходит к выводу, что этот и некоторые другие американские данные демонстрируют «наше большое отставание от США в космосе».

Так что сообщения НАСА о большом числе выходов американских астронавтов в космос играли важную роль: они поощряли среди советских космических специалистов настроения уныния и ожидания неминуемого проигрыша в лунной гонке. А вселить неуверенность в соперника – это уже половина дела для победы над ним. Мысль же о том, что, по крайней мере часть «выходов в космос» подделана так же, как подделан эпизод с выходом в космос М. Коллинза, тогда никому не приходила в голову.

История, рассказанная Р. Рене, наводит на следующие размышления:

Если НАСА потребовался такой подлог, то не говорит ли это о том, что на самом деле у американцев дело с выходами в космос обстояло из рук вон плохо? Тем более что никак нельзя быть уверенным, что обнаружены все подделки, подобные «выходу М. Коллинза в космос».

Если НАСА «изобразила» выход в космос М. Коллинза из «Джемини-10», то почему она не могла аналогичным образом «изобразить» «выход» в открытый космос астронавтов Д. Скотта и Р. Швейкарта из «Аполлона-9»? Таинственные воздушные вихри вокруг А-9, обнаруженные в рассмотренном киноэпизоде, делают эту возможность очень вероятной.

И, если НАСА пошла на то, чтобы изобразить выход астронавта Д. Скотта методами кино, то не говорит ли это о том, что реальная программа полёта А-9 была далека от той, которую представила НАСА?

В общем, достоверность информации НАСА о полёте А-9 вызывает большое сомнение. И как в этом свете доверять информации НАСА об остальных испытаниях лунного модуля (А-5 и А-10)?

* * *

Подведём итог раздела:

1. Лунный модуль не испытывался по своему главному назначению – посадке на Луну и взлёту с неё.

2. Изучение материалов полёта А-9 показало, что есть основания сомневаться в том, что даже объявленная НАСА куцая программа испытаний лунного модуля (манёвры вместо посадки) была в действительности выполнена.

Что ж, нам ничего не остаётся, как, сидя в неиспытанном модуле, приступить вместе с астронавтами к посадке на Луну.

Используемые печатные источники и сайты Интернета

1. В. М. Грибов. «Давайте сфотографируем их следы», «Дуэль» № 20/265, (2002)

2. http://www.skeptik.net/conspir/append3.htm – исследование Луны автоматическими. аппаратами в 1958-76 гг

3. ПКЩ – «Летали ли американцы на Луну?» http://www.skeptik.net/conspir/moonhoax.htm,с.59

4. Я. Голованов, «Правда о программе APOLLO», М.: Яуза – ЭКСМО-Пресс, 2000 г, глава 5, с.,с. 94-95, 125, 128, 130 134-138, 148. Эта книга есть в Интернете: http://www.epizodsspace.narod.ru/bibl/golovanov/apollo/06.html

5. НАСА http://www.hq.nasa.gov/office/pao/History/alsj/apollo.precurs.html о полётах А-9 и А-10

6. Энциклопедия «Космонавтика». Под научной ред. академика Б. Е. Чертока. М.: Аванта+, 2004, с.390

7. http://www.buran.ru/htm/shuttle.htm – история разработки многоразовой космической системы «Спейс Шаттл»

8. НАСА http://www.apolloarchive.com/apollo_gallery.html («the project apollo image gallery») далее apollo-9

9. Каманин Н. П. Скрытый космос: 4-я книга – М.: ООО ИИД «Новости космонавтики», 2001 г. – 384 с.

http://www.epizodsspace.narod.ru/bibl/kamanin/kniga4/obl-4.html, запись от 5 января 1969 года

Ссылки на используемые иллюстрации

2. http://www.apolloarchive.com/apollo_gallery.html («The Project Apollo Image Gallery») далее Apollo-9 далееа ) as9-20-3064 б ) as9-19-2994

3-6. [ф2 ], см. ролик ив12 на Интернет-сайте книги

7. [ф1 ], см.ролик ив13 на Интернет-сайте книги